首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fractionation and distribution with depth of Cd, Cr, Cu, Ni, Pb, and Zn in 26 soils of Northern Kentucky were determined through a sequential extraction procedure in response to environmental concerns about increasing anthropogenic inputs in a fast-paced, urbanizing area. The selected sites have not received any biosolid- or industrial-waste applications. Average total concentrations per metal in soil profiles derived from alluvial, glacial till, and residual materials ranged from 0.43 to 56.00 mg kg?1 in the sequence Zn > Ni > Pb > Cr > Cu > Cd, suggesting relatively small anthropogenic inputs. The distribution of Cu, Cr, Ni, and Zn increased with soil depth, whereas Cd and Pb remained stable, indicating a strong geological or pedogenic influence. Residual forms were most important for the retention of Cu, Zn, and Ni. Cadmium and Pb exhibited a strong affinity for the Fe-Mn oxide fraction, while Cr showed the strongest association with the organic fraction. In terms of metal mobility and toxicity potential inferred from metal concentrations in labile fractions, Cd posed the greatest risk, followed by Cr ~ Pb > Ni > Zn > Cu. Soil pH, OM, and clay content were the most important parameters explaining the partitioning of metals in labile and residual fractions, emphasizing the importance of metal fractionation in soil management decisions. Alluvial soils generally contained the highest total and labile metal concentrations, suggesting potential metal enrichment through anthropogenic additions and depositional processes. These environments exhibit the highest risk for metal mobilization due to drastic changes in redox conditions, which can destabilize existing metal retention pools.  相似文献   

2.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

3.
The concentrations of nine metals were measured by atomic absorption spectrophotometry in surface sediments of three coastal creeks, namely, the Ifie, Egbokodo and Ubeji creeks, in the Niger Delta of Nigeria, from August 2012 to January 2013. The aim of the study was to provide information on the spatial and seasonal distribution patterns, degree of contamination, and ecological risks of metals in these sediments. The mean concentrations of the nine metals in these creek sediments ranged from 0.30 to 3.20?mg kg?1 Cd; 10.7 to 24.7?mg kg?1 Pb, 125 to 466?mg kg?1 Cr; 3.1.10 to 14.9?mg kg?1 Cu; 4.7 to 14.3?mg kg?1 Co; 61.1 to 115?mg kg?1 Ni; 106 to 183?mg kg?1 Mn; 52.0 to 170?mg kg?1 Zn and 5 469 to 20 639?mg kg?1 Fe. In general, the metal concentrations were higher in the dry season than the wet season, except for Cr. The concentrations of Cd, Cr, Ni and Zn were above their regulatory control limits in sediment as specified by the Nigerian Regulatory Authority and Cd was identified as the main ecological risk factor. The enrichment factors for the studied metals followed the order: Cd > Cr > Ni > Zn > Pb > Co > Mn > Cu. The average multiple pollution index values indicated that these sediments were severely polluted with significant inputs from Cd, Ni and Cr.  相似文献   

4.
Knowledge of soil heavy metal concentration is very important for assessing the purity and quality of the soil in an environment. The concentrations of nine heavy metals (NHM), Zn, Pb, Cr, Cu, Co, Ni, Cd, Hg, and As, from the near-surface soils (~ 0–15 cm) from an industrial cluster in Kumasi, Ghana, were qualitatively and quantitatively measured and analyzed using X-ray fluorescence (XRF) spectroscopy analysis. The sources of these NHM were mainly anthropogenic as a result of the indiscriminate industrial waste disposal. In all, a total of about 100 soil samples were taken from six sampling sites, four of which were industrial and the remaining two residential. Forty soil samples out of the total number were carefully selected for elemental analyses and the mean heavy metal concentrations were calculated using statistical methods. The results from locations of high industrial impact showed that the mean concentrations of the NHM present in the soil were in the order of Zn (189.2?908.6 mgkg?1), Pb (133.7?571.3 mgkg?1), Cr (91.3?545.8 mgkg?1), Cu (62.9?334.6 mgkg?1), Co (38.6?81.9 mgkg?1), Ni (12.4?30.9 mgkg?1), Cd (6.9?13.2 mgkg?1), Hg (5.5?10.4 mg kg?1), and As (2.3?18.6 mgkg?1). Apart from Ni and As, all the heavy metals recorded concentrations that ranged from 10?900% higher than their respective threshold limit values (TLVs). Heavy metal concentrations from the residential sites were comparatively far lower with only Cr, Cd, and Hg registering concentrations between 65?250% above their TLVs. The cluster with its residential communities is at a serious risk of soil heavy metal toxicity and awareness to this needs to be created as such.  相似文献   

5.
In this study, sediment samples were collected from Kabul River (Pakistan) and analyzed for heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). The physico-chemical characteristics were also determined which are known to influence the metal accumulation within the sediment matrix. Heavy metal concentrations (mg kg?1, dry weight basis) in the sediment were in the order of Zn > Cr > Ni > Pb > Cd. Heavy metal concentrations were found in moderately polluted category set by U. S. Environmental Protection Agency (USEPA). However, Cr and Ni concentrations exceeded the screening levels at the sites where a larger volume of industrial effluents enter into Kabul River. Higher concentrations of almost all the tested metals were detected at locations of greater industrial and sewage entry points. Sediment organic matter (OM) exhibited strong correlation with Pb (R2 = 0.80), Ni (R2 = 0.67) and Zn (R2 = 0.46), indicating that OM plays a significant role in metal retention and accumulation. The findings of this study showed that Kabul River is reasonably contaminated with selected heavy metals released from anthropogenic sources. In the study area, sewage discharge was the major source of heavy metals including Zn and Pb, which were observed at locations where sewage effluents enter into the river.  相似文献   

6.
To identify sources of heavy metal(loid) (HM) contamination in agricultural soils of Huzhou, surface soil samples were sampled from 89 different agricultural regions in 2012. Concentrations of heavy metal(loid)s, along with pH, total phosphorus (TP), total nitrogen (TN), and soil organic matter (SOM), were determined. Ecological risk was then assessed using a modified Hakanson ecological risk index, and the sources of contamination were determined using principal component analysis (PCA). Mean concentrations of heavy metal(loid)s were 10.26, 23.21, 83.75, 22.81, 0.25, 61.86, 33.03, and 0.15 mg kg?1 for As, Cu, Zn, Ni, Cd, Cr, Pb, and Hg, respectively. Cu, Zn, Ni, Cr, Cd, Hg, and Pb were correlated positively with TP and there were obvious positive correlations among Cu, Zn, Ni, Cr, and Cd. Risk index (RI) values varied from 39 to 1246 with a mean value of 137. Enrichment of Pb, Zn, Cu, and especially Cd can be attributed to excessive use of nitrogen and phosphorus fertilizers containing heavy metals, as well to surface irrigation and natural soil formation. While the ecological risk of most agricultural soils in Huzhou is low, it is recommended that the use of phosphate and nitrogen fertilizers be restricted and production technology be improved to reduce the heavy metal(loid) concentrations. Results suggest that the Chinese environmental quality standard for soil should be revised to better address heavy metal(loid) contamination.  相似文献   

7.
Abstract

In order to investigate heavy metal contamination in an urban environment during urbanization and economic development, 35 road-deposited sediment samples were collected from seven different land-use zones (commercial, residential, traffic, scenic park, educational, industrial and peri-urban) in Nanjing, a large city in P.R. China. The ranges of total metal concentrations found were: 28.7–272 mg kg?1 for Cu; 24.8–268 mg kg?1 for Ni; 37.3–204 mg kg?1 for Pb; 140–798 mg kg?1 for Zn; 0.44–2.19mg kg?1 for Cd; and 60.6–250 mg kg?1 for Cr. Metal fractionation was carried out using a modified three-step European Bureau of References (BCR) sequential extraction procedure. Cadmium and Zn were found predominantly associated with the acid extractable fractions; Ni and Cr were dominant in the residual fraction; Pb was predominantly associated with the residual and reducible fractions; Cu was dominant in the oxidizable and residual metal fractions. Based on the sum of the acid-extractable, reducible, and oxidizable fractions, Cd, Zn and Pb are potentially the most toxic metals in the road-deposited sediment in Nanjing. No significant differences, except for Zn, were found in the metal fractionation pattern for Cu, Ni, Pb, Cd, and Cr in different land use zones.  相似文献   

8.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

9.
Due to rapid industrialization and urbanization during the last two decades, contamination of urban agricultural soils by heavy metals is on an increase all over China. In this study, fifty soil samples were collected from urban vegetable fields in a chemical industrial area and non chemical industrial area in Jilin City to investigate the heavy metal pollution level. The mean Pb, Cr, Cu, Ni, Zn, and Cd contents (30.84, 65.65, 26.41, 23.07, 135.14, and 0.1434 mg kg?1 dry weight, respectively) in the urban vegetable soils were higher than their corresponding natural background values. The principal component analysis (PCA) was performed to identify the possible sources of metal contamination in the study area. The results indicated that Cu and Zn were mainly from industrial activities, while Pb and Cd were derived from traffic activities and agricultural activities, and Cr and Ni tended to be from parent material. The distribution of comprehensive pollution index values showed that Pb, Cr, Cu, Ni, Zn, and Cd concentrations in most of the agricultural fields did not exceed the baseline values affecting the safety of agricultural production and human health according to the soil environmental quality standard of China, indicating an insignificant contamination of these metals in Jilin City.  相似文献   

10.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

11.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   

12.
Anthropogenic activities like agriculture have resulted in increased concentrations of some trace elements of toxicological and environmental concern in soils. Application of fertilizers has been one of the major inputs of these contaminants to agricultural soils in developing countries. Twenty-two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and NK fertilizers and micronutrient sources, were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). As expected, the trace element content of fertilizers was highly variable and related to the origin of the material. Phosphorus fertilizers, especially triple superphosphate, presented the highest As, Cd, Cu, Cr, Ni, V, and Zn concentrations. In some of these fertilizers, the Cr, V, and Zn contents reached values greater than 3475 mg kg?1 of P, and the Cd content (up to 288 mg kg?1 of P) was several times higher than the regulatory limits of different countries. Some micronutrient sources presented the highest concentrations of Mn and Pb. In the cases of N, K, and NK fertilizers, the trace element concentration was very low, sometimes below the detection limits. In some agricultural systems the input of trace elements such as As and Cd to the soil through P fertilizers application may be higher than the outputs through plant uptake and leaching; therefore the long-term use of these fertilizers may cause the trace element concentration to increase in the plow layer of agricultural soils.  相似文献   

13.
This study evaluates heavy metal removal associated with phytomass management in a Typic Hapludox after three applications of pig slurry. Like humic acids in pig slurry were characterized through physics and chemical spectroscopy technics. Heavy metal levels were determined in ration that was offered to pigs, anaerobically digested pig slurry, and plant tissues from pig slurry-fertilized black oat (Avena strigosa Schreb.) and ryegrass (Lolium multiflorum Lam.) intercrop. Soil contamination was evaluated by the pseudo-total heavy metal levels in six soil layers and the bioavailable levels in the top soil layer. Results indicate that the ration is the origin of heavy metals in the pig slurry. The approximate levels in the ration were as follows (mg kg?1): Cu 23.9, Zn 92.02, 153.15, Mn 30.98, Ni 0.23, Pb 10.75, Cr 0.34, Co 0.08, and Cd 0.05. The approximate levels of these metals in the pig slurry were as follows (mg kg?1): Cu 71.08, Zn 345.67, Fe 83.02, Mn 81.71, Ni 1.13, Pb 4.35, Co 0.28, and Cd 0.16. Like humic acids contained 55% aliphatic chains, 14% oxygenated aliphatic chains, and 15% carboxyls, demonstrating their high capacity for interaction with heavy metals by forming soluble complexes. Soil contamination was indicated by the accumulation of heavy metals in the six soil layers in relation to the applied pig slurry dose (ranged as follows (mg kg?1): Cu 110 to 150, Zn 50 to 120, Ni 20 to 40, and Pb 12 to 16) and as bioavailable forms (levels ranged as follows (mg kg?1): Cu < 1, Zn 1.0–1.5, Ni 0.1–1.5, and Pb 1.9–6.3). The positive correlation between heavy metal accumulation in the plants and soil bioavailable heavy metal levels and the lowest heavy metal levels under higher intensity of phytomass removal demonstrate the ability of phytomass management to reduce soil contamination.  相似文献   

14.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

15.
A limiting factor in land application of sewage sludge is the resultant heavy metal accumulation in soils followed by biomagnification in the food chain, posing a potential hazard to animal and human health. In view of this fact, pot experiments were conducted to evaluate the effect of digested sludge application to soil on phytotoxicity of heavy metals such as Cd, Cr, Ni, and Pb to radish (Raphanus sativus L.) plants. Increasing sludge levels resulted in increased levels of DTPA-extractable heavy metals in the soil. Cadmium was the dominant metal extracted by DTPA followed by Ni, Pb, and Cr. The extractability of metals by DTPA tended to decrease from the first to the second crop. Dry matter yield of radish increased significantly as a function of increasing sludge treatments. Soil application of sludge raised the concentration of one or more heavy metals in plants. Shoots contained higher concentrations of Cd, Cr, and Ni than the roots of radish plants. Shoot concentrations of Cd, Cr, Ni, and Pb were within the tolerance levels of this crop at all rates of sludge application. Shoot as well as root concentration of Cd was above 0.5 mg kg?1, considered toxic for human and animal consumption. The levels of DTPA-extractable Cd and Ni were less correlated while those of Cr and Pb were more correlated with their respective shoot and root contents. The results emphasize that accumulation of potentially toxic heavy metals in soil and their build-up in vegetable crops should not be ignored when sludge is applied as an amendment to land.  相似文献   

16.
The input of heavy metals by atmospheric deposition to forested watersheds substantially decreased during the last decades in many areas. The goal of our study was to identify the present sinks and sources of metals and factors influencing metal mobility at the catchment and soil profile scale. We determined concentrations and fluxes of Cd, Zn, Cu, Cr and Ni in precipitation, litterfall, soil solutions (Oi, Oe, Oa horizon percolates, 20 and 90?cm soil depth) and runoff in a forest ecosystem in NE-Bavaria, Germany for 1?year. The metal concentrations in solutions were mostly <10???g?l?1 beside Zn (<1200???g?l?1). The present total deposition was estimated at 1.0, 560, 30, 1.2 and 10.4?g?ha?1?year?1 for Cd, Zn, Cu, Cr and Ni, respectively. The mass balance (total deposition minus runoff) at the catchment scale indicated actual retention of Zn, Cu and Ni, but an almost balanced budget for Cr and Cd. Considering the soil profile scale, the Oi horizon still acted as a sink, whereas the Oe and Oa horizons were presently sources for all metals. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. In the mineral soil horizons, Kd values derived from field measurements were substantially larger than those predicted with empirical regression equations from Sauv?? et al. (Environ Sci Technol 34:1125?C1131, 2000; Environ Sci Technol 37:5191?C5196, 2003). The mineral soil acted as a sink for all metals beside Cd. Dissolved organic C and pH influenced the metal mobility, as indicated by significant correlations to metal concentrations in Oa percolates and runoff. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. Overall, the decreased deposition rates have obviously induced a source function of the Oe and Oa horizon for metals. Consequently, mobilization of metals from forest floor during heavy rain events and near surface flow conditions may lead to elevated concentrations in runoff.  相似文献   

17.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

18.
In this study, the content characteristics, comprehensive pollution assessment, and morphological distribution characteristics of heavy metals (Mn, Cd, Cr, Pb, Ni, Zn, and Cu) were researched based on the processes of field investigation, sample collection, and experimental analysis. Results showed that the mean concentrations of Mn, Pb, Cr, Cu, Cd, Zn, and Ni in surface soils were 522.77, 22.56, 55.10, 25.41, 0.25, 57.02, and 48.47 mg kg?1, respectively. The surface soil from Sunan mining area was contaminated by Cu, Cd, and Ni in different degrees, and high CV values of Cd, Zn, Pb, and Ni were influenced by local human activities possibly. The evaluation results suggested that the mean Igeo values were in the sequence of Cd (0.657) > Ni (0.052) > Cu (?0.293) > Mn (?0.626) > Zn (?0.761) > Cr (?0.884) > Pb (?0.899). Besides, Cd was the most significant potential risk factor among all elements. Nevertheless, the Cd of bioavailable speciations with higher proportion had stronger migration and toxicity, and was more easier to be absorbed and enriched than other elements by some crops (e.g., vegetables, rice), and being at a relatively higher potential ecological risk in soil.  相似文献   

19.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

20.
Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg?1 and 2000 mg Zn kg ?1 in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg ?1 in wood and 78 mg kg ?1 in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号