首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The Canadian Environmental Protection Act (CEPA) authorizes the Ministers of the Environment and of Health in Canada to investigate a wide variety of substances that may contaminate the environment and cause adverse effects on the environment and/or on human health. Under the Act, assessments have been completed for 44 environmental contaminants on the first Priority Substances List (PSL) and are relatively advanced for 25 compounds on the second PSL. The principles developed for the application of uncertainty factors in assessment of risks to human health for Priority Substances under CEPA are outlined, with emphasis on those aspects which are somewhat unique and/or evolving. The interface of developments in the Priority Substances program with an initiative of the International Programme on Chemical Safety in this area to effect greater harmonization of approaches is also described.  相似文献   

2.
The default uncertainty factors used for risk assessment are applied either to allow for different aspects of extrapolation of the dose-response curve or to allow for database deficiencies. Replacement of toxicokinetic or toxicodynamics defaults by chemical-specific data allows the calculation of a chemical-specific “data-derived factor”, which is the product of chemical-specific values and default uncertainty factors. Such chemical-specific composite values will improve the scientific basis of the risk assessment of that chemical, but the necessary chemical-specific data are rarely available. Categorical defaults related to pathways of elimination and mechanisms of toxicity could be used when the overall fate or mechanism is known, but there are no chemical-specific data sufficient to allow replacement of the default, and the development of an overall data-derived factor. The development of pathway-related categorical defaults is being undertaken using data on selected probe substrates for which adequate data are available. The concept and difficulties of this approach are illustrated using data for CYP1A2.  相似文献   

3.
A particle-induced X-ray emission (PIXE) analysis method is presented, which allows measurement of eight elements (i.e., K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) in human brain samples of only a few mg dry weight. The precision and accuracy of the method were investigated by analyzing animal brain matter with both PIXE and instrumental neutron activation analysis (INAA). The method was applied to measure the 8 elements in 46 different regions of 3 human brains. The sections analyzed originated from either the left or the right cerebral hemisphere, brain stem, and cerebellum. For one of the brains, sections were also analyzed from 26 corresponding regions of both hemispheres. For all elements, similar concentrations were found in the corresponding areas of the left and right sides of the brain. The concentrations (in μg/g dry weight) of the elements K, Fe, Cu, Zn, Se, and Rb were consistently higher in cortical structures than in white matter. Deep nuclei and brain stem, which have a mixed composition, showed intermediate values for K, Zn, Se, and Rb. A hierarchical cluster analysis indicated that the various brain regions clustered into two large groups, one comprising gray and mixed matter regions and the other, white and mixed matter brain areas.  相似文献   

4.
The goal of this article was to establish reference ranges of the concentration of trace elements in human serum and to compare these results with those reported by other authors. We describe the sample preparation and measurement conditions that allow the rapid, precise, and accurate determination of Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum samples (n=110) by inductively coupled plasma-mass spectrometry (ICP-MS). Accuracy and precision were determined by analyzing three reconstituted reference serum samples by comparison with other methods and by the standard addition procedure. The advantages of the ICP-MS method include short time of analysis of the elements mentioned, low detection limit, high precision, and high accuracy. Disadventages include a high risk of contamination due to the presence of some of the elements of interest in the environment, the relatively delicate sample handling, and the high cost of the equipment.  相似文献   

5.
The reference ranges of the trace elements Al, As, Be, B, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Li, Rb, Se, Sr, and Zn were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in sera of a group of free-ranging plains viscachas of the pampa grasslands of Argentina. The values were compared with those of a small group of captive plains viscachas of the Zurich Zoo with diabetes and bilateral cataracts. In addition, a method for digestion of whole-blood samples is described for the trace element determination. Significant differences in the concentration of trace elements in the two groups of animals are discussed. No correlation was found between the levels of selenium and of other trace elements compared to the formation of cataracts.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号