首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prokaryotic carbonic anhydrases   总被引:2,自引:0,他引:2  
Carbonic anhydrases catalyze the reversible hydration of CO(2) [CO(2)+H(2)Oright harpoon over left harpoon HCO(3)(-)+H(+)]. Since the discovery of this zinc (Zn) metalloenzyme in erythrocytes over 65 years ago, carbonic anhydrase has not only been found in virtually all mammalian tissues but is also abundant in plants and green unicellular algae. The enzyme is important to many eukaryotic physiological processes such as respiration, CO(2) transport and photosynthesis. Although ubiquitous in highly evolved organisms from the Eukarya domain, the enzyme has received scant attention in prokaryotes from the Bacteria and Archaea domains and has been purified from only five species since it was first identified in Neisseria sicca in 1963. Recent work has shown that carbonic anhydrase is widespread in metabolically diverse species from both the Archaea and Bacteria domains indicating that the enzyme has a more extensive and fundamental role in prokaryotic biology than previously recognized. A remarkable feature of carbonic anhydrase is the existence of three distinct classes (designated alpha, beta and gamma) that have no significant sequence identity and were invented independently. Thus, the carbonic anhydrase classes are excellent examples of convergent evolution of catalytic function. Genes encoding enzymes from all three classes have been identified in the prokaryotes with the beta and gamma classes predominating. All of the mammalian isozymes (including the 10 human isozymes) belong to the alpha class; however, only nine alpha class carbonic anhydrase genes have thus far been found in the Bacteria domain and none in the Archaea domain. The beta class is comprised of enzymes from the chloroplasts of both monocotyledonous and dicotyledonous plants as well as enzymes from phylogenetically diverse species from the Archaea and Bacteria domains. The only gamma class carbonic anhydrase that has thus far been isolated and characterized is from the methanoarchaeon Methanosarcina thermophila. Interestingly, many prokaryotes contain carbonic anhydrase genes from more than one class; some even contain genes from all three known classes. In addition, some prokaryotes contain multiple genes encoding carbonic anhydrases from the same class. The presence of multiple carbonic anhydrase genes within a species underscores the importance of this enzyme in prokaryotic physiology; however, the role(s) of this enzyme is still largely unknown. Even though most of the information known about the function(s) of carbonic anhydrase primarily relates to its role in cyanobacterial CO(2) fixation, the prokaryotic enzyme has also been shown to function in cyanate degradation and the survival of intracellular pathogens within their host. Investigations into prokaryotic carbonic anhydrase have already led to the identification of a new class (gamma) and future research will undoubtedly reveal novel functions for carbonic anhydrase in prokaryotes.  相似文献   

2.
1. Carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been purified from erythrocytes of hagfish (Myxine glutinosa). A single form with low specific CO2 hydration activity was isolated. The purified carbonic anhydrase appeared homogeneous judging from polyacrylamide gel electrophoresis and gel filtration experiments. The protein has a molecular weight of about 29 000, corresponding to about 260 amino acid residues. This molecular weight is in accordance with other vertebrate carbonic anhydrases with the exception of the elasmobranch enzymes, which have Mr 36 000--39 000. 2. The molecular weight obtained for hagfish carbonic anhydrase indicates that a carbonic anhydrase with Mr approx. 29 000 is the ancestral type of the vertebrate enzyme rather than, as in sharks, a heavier carbonic anhydrase molecule. 3. The circular dichroism spectrum may indicate a somewhat different structural arrangement of aromatic amino acid residues in this enzyme than in the mammalian carbonic anhydrases. 4. The enzyme is strongly inhibited by acetazolamide and also to a lesser extent by monovalent anions. 5. Zn2+, which is essential for activity, appears, contrary to other characterized carbonic anhydrases, less strongly bound in the active site of the enzyme.  相似文献   

3.
We have measured the pH dependence of kcat and kcat/Km for CO2 hydration catalyzed by both native Zn2+-and metallo-substituted Co2+-bovine carbonic anhydrase II in the absence of inhibitory ions. For the Zn2+-enzyme, the pKa values controlling kcat and kcat/Km profiles are similar, but for the Co2+-enzyme the values are about 0.6 pH units apart. Computer simulations of a metal-hydroxide mechanism of carbonic anhydrase suggest that the data for both native and Co2+-carbonic anhydrase can be accounted for by the same mechanism of action, if we postulate that the substitution of Co2+ for Zn2+ in the active site causes a separation of about 0.6 pH units in the pKa values of His-64 and the metal-bound water molecule. We have also measured the activation parameters for kcat and kcat/Km for Co2+-substituted carbonic anhydrase II-catalyzed CO2 hydration and have compared these values to those obtained previously for the native Zn2+-enzyme. For kcat and kcat/Km we obtain an enthalpy of activation of 4.4 +/- 0.6 and approximately 0 kcal mol-1, respectively. The corresponding entropies of activation are -18 +/- 2 and -27 +/- 2 cal mol-1 K-1.  相似文献   

4.
beta-diketone-cleaving enzyme Dke1 is a homotetrameric Fe2+-dependent dioxygenase from Acinetobacter johnsonii. The Dke1protomer adopts a single-domain beta-barrel fold characteristic of the cupin superfamily of proteins and features a mononuclear non-haem Fe2+ centre where a triad of histidine residues, His-62, His-64 and His-104, co-ordinate the catalytic metal. To provide structure-function relationships for the peculiar metal site of Dke1 in relation to the more widespread 2-His-1-Glu/Asp binding site for non-haem Fe2+,we replaced each histidine residue individually with glutamate and asparagine and compared binding of Fe2+ and four non-native catalytically inactive metals with purified apo-forms of wild-type and mutant enzymes. Results from anaerobic equilibrium microdialysis (Fe2+) and fluorescence titration (Fe2+, Cu2+, Ni2+, Mn2+ and Zn2+) experiments revealed the presence of two broadly specific metal-binding sites in native Dke1 that bind Fe2+ with a dissociation constant (Kd) of 5 microM (site I) and approximately 0.3 mM (site II). Each mutation, except for the substitution of asparagine for His-104, disrupted binding of Fe2+, but not that of the other bivalent metal ions, at site I,while leaving metal binding at site II largely unaffected. Dke1 mutants harbouring glutamate substitutions were completely inactive and not functionally complemented by external Fe2+.The Fe2+ catalytic centre activity (kcat) of mutants with asparagine substitution of His-62 and His-104 was decreased 140- and 220-fold respectively, compared with the kcat value of 8.5 s(-1) for the wild-type enzyme in the reaction with pentane-2,4-dione.The H64N mutant was not catalytically competent, except in the presence of external Fe2+ (1 mM) which elicited about 1/1000 of wild-type activity. Therefore co-ordination of Fe2+ by Dke1 requires an uncharged metallocentre, and three histidine ligands are needed for the assembly of a fully functional catalytic site. Oxidative inactivation of Dke1 was shown to involve conversion of enzyme-bound Fe2+ into Fe3+, which is then released from the metal centre.  相似文献   

5.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

6.
Here we report the existence, purification and characterisation of carbonic anhydrase in Plasmodium falciparum. The infected red cells contained carbonic anhydrase approximately 2 times higher than those of normal red cells. The three developmental forms of the asexual stages, ring, trophozoite and schizont were isolated from their host red cells and found to have stage-dependent activity of the carbonic anhydrase. The enzyme was purified to homogeneity from the crude extract of P. falciparum using multiple steps of fast liquid chromatographic techniques. It had a Mr of 32 kDa and was active in a monomeric form. The human red cell enzyme was also purified for comparison with the parasite enzyme. The parasite enzyme activity was sensitive to well-known sulfonamide-based inhibitors of both bacterial and mammalian enzymes, sulfanilamide and acetazolamide. The kinetic properties and the amino terminal sequences of the purified enzymes from the parasite and host red cell were found to be different, indicating that the purified protein most likely exhibited the P. falciparum carbonic anhydrase activity. In addition, the enzyme inhibitors had antimalarial effect against in vitro growth of P. falciparum. Moreover, the vital contribution of the carbonic anhydrase to the parasite survival makes the enzyme an attractive target for therapeutic evaluation.  相似文献   

7.
Human porphyria cutanea tarda (PCT) is an unusual consequence of common hepatic disorders such as alcoholic liver disease and iron overload, where hepatic iron plays a key role in the expression of the metabolic lesion, i.e., defective hepatic decarboxylation of porphyrinogens. In this investigation, kinetic studies on a partially purified rat liver uroporphyrinogen decarboxylase have been conducted under controlled conditions to determine how iron perturbs porphyrinogen decarboxylation in vitro. The enzyme, assayed strictly under anaerobic conditions in the dark, was inhibited progressively by ferrous iron. Approximately 0.45 mM ferrous ammonium sulfate was required to observe about 50% inhibition of enzyme activity measured with uroporphyrinogen I as substrate. We showed that (a) all the steps of enzymatic decarboxylation (octa-, hepta-, hexa-, and pentacarboxylic porphyrinogen of isomer I series) were inhibited by ferrous iron. The inhibition was competitive with respect to uroporphyrinogen I and III substrates; (b) the cations, e.g., Fe3+ and Mg2+, had no effect, whereas sulfhydryl group specific cations and compounds such as Hg2+, Zn2+, p-mercuribenzoate, and 5,5'-dithiobis(2-nitrobenzoate) all inhibited the enzyme; (c) the enzyme could be protected from inhibition by Fe2+ and p-mercuribenzoate by preincubation with pentacarboxylic porphyrinogen, a natural substrate and competitive inhibitor. These data suggest for the first time a direct interaction of ferrous iron with cysteinyl residue(s) located at the active site(s) of the enzyme.  相似文献   

8.
A new enzymatic method has been developed to determine trace amounts of Zn2+ in vegetables. The basis of the method is that apocarbonic anhydrase regains its activity in proportion to the concentration of Zn2+ present in solution. Bovine carbonic anhydrase was purified from erythrocyte haemolysate by affinity chromatography and the bound Zn2+ removed by dialysis of purified enzyme against a solution of pyridine-2, 6-dicarboxylic acid. Pure (100%) apoenzyme was obtained. The concentration of Zn2+ in vegetable samples was determined using the enzymatic method and by atomic absorption spectroscopy. Determinations made using the two methods were not significantly different one from another.  相似文献   

9.
Various metal ions were capable of aggregating and precipitating conglutin gamma, an oligomeric glycoprotein purified from Lupinus albus seeds, at neutral pH values. The most effective metal ions, at 60-fold molar excess to the protein, were Zn2+, Hg2+ and Cu2+; a lower influence on the physical status of conglutin gamma was observed with Cr3+, Fe3+, Co2+, Ni2+, Cd2+, Sn2+, and Pb2+, while Mg2+, Ca2+ and Mn2+ had no effect at all. The insolubilisation of the protein with Zn2+, which is fully reversible, strictly depended on both metal concentration and pH. with middle points of the sharp transitions at three-fold molar excess and pH 6.5, respectively. Conglutin gamma is also fully retained on a metal affinity chromatography column at which Zn2+ and Ni2+ were complexed. A drop of pH below 6.0 and the use of chelating agents, such as EDTA and imidazole, fully desorbed the protein. A slightly lower binding to immobilised Cu2+ and Co2+ and no binding with Mg2+, Cd2+ and Mn2+ were observed. The role of the numerous histidine residues of conglutin gamma in the binding of Zn2+ is discussed.  相似文献   

10.
Superoxide dismutase (SOD) was purified from a facultatively aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. The purified native protein from aerobically grown cells exhibited 1,960 U of SOD activity/mg and contained 0.86 +/- 0.04 manganese and <0.01 iron atoms per subunit. The gene encoding SOD was cloned and expressed in Escherichia coli. Although the recombinant protein was soluble, little activity was observed due to the lack of metal incorporation. Reconstitution of the enzyme by heat treatment with either Mn or Fe yielded a highly active protein with specific activities of 1,970 and 434 U/mg, respectively. This indicated that the SOD from P. calidifontis was a cambialistic SOD with a preference toward Mn in terms of activity. Interestingly, reconstitution experiments in vitro indicated a higher tendency of the enzyme to incorporate Fe than Mn. When P. calidifontis was grown under anaerobic conditions, a majority of the native SOD was incorporated with Fe, indicating the cambialistic property of this enzyme in vivo. We further examined the expression levels of SOD and a previously characterized Mn catalase from this strain in the presence or absence of oxygen. Northern blot, Western blot, and activity measurement analyses revealed that both genes are expressed at much higher levels under aerobic conditions. We also detected a rapid response in the biosynthesis of these enzymes once the cells were exposed to oxygen.  相似文献   

11.
Procedures for the purification of bovine muscle carbonic anhydrase (isoenzyme III) are described. The purified enzyme has a molecular weight near 29,000 and contains one Zn2+ ion per molecule. The sedimentation coefficient, s(0)20,w, is 2.8 X 10(-13) s, the isoelectric pH is 8.5, and A280(0.1%) = 2.07 cm-1. The CO2 hydration activity, expressed as kcat/Km, is about 1.5% of that of human isoenzyme I (or B) and about 0.3% of that of human isoenzyme II (or C) at pH 8 and 25 degrees C. The activity is nearly independent of pH between pH 6.0 and 8.6. The muscle enzyme is weakly inhibited by the sulfonamide inhibitor, acetazolamide, whereas some anions, particularly sulfide and cyanate, are efficient inhibitors. Bovine carbonic anhydrase III contains five thiol groups, two of which react readily with Ellman's reagent without effect on the catalytic activity. A reinvestigation of the amino acid sequences of cysteine-containing tryptic peptides has shown that cysteine residues occur at sequence positions 66, 183, 188, 203, and 206.  相似文献   

12.
假单胞菌WBC—3甲基对硫磷水解酶性质的初步研究   总被引:12,自引:0,他引:12  
从最近分离到的有机磷农药降解菌Pseudomonas sp.WBC—3中获得了甲基对硫磷水解酶(Methyl parathion hydrolase,MPH,EC3.1.8.3)。该酶在48h的培养物中分布比例分别为:上清液2.1%,胞内86.2%和胞间质11.7%,说明MPH为胞内酶。经过CM—sepharose Fast Flow阳离子交换层析,获得电泳纯的酶。SDS—PAGE和凝胶过滤层析表明,该酶为单体蛋白,分子量约为34kD。动力学分析显示该酶为非特异性有机磷降解酶,但最适底物为甲基对硫磷。在pH9~12范围,酶表现较高活力水平,最高活力的反应温度为40℃。根据各类金属离子和鳌合剂对酶活的影响,推测MPH为金属酶。  相似文献   

13.
The gene encoding carbonic anhydrase from Methanosarcina thermophila was hyperexpressed in Escherichia coli, and the heterologously produced enzyme was purified 14-fold to apparent homogeneity. The enzyme purified from E. coli has properties (specific activity, inhibitor sensitivity, and thermostability) similar to those of the authentic enzyme isolated from M. thermophila; however, a discrepancy in molecular mass suggests that the carbonic anhydrase is posttranslationally modified in either E. coli or M. thermophila. Both the authentic and heterologously produced enzymes were stable to heating at 55 degrees C for 15 min but were inactivated at higher temperatures. No esterase activity was detected with p-nitrophenylacetate as the substrate. Plasma emission spectroscopy revealed approximately 0.6 Zn per subunit. As judged from the estimated native molecular mass, the enzyme is either a trimer or a tetramer. Western blot (immunoblot) analysis of cell extract proteins from M. thermophila indicates that the levels of carbonic anhydrase are regulated in response to the growth substrate, with protein levels higher in acetate than in methanol- or trimethylamine-grown cells.  相似文献   

14.
We have determined the activation parameters of kcat and kcat/Km for the carbonic anhydrase II-catalyzed hydration of CO2. The enthalpy and entropy of activation for kcat is 7860 +/- 120 cal mol-1 and -3.99 +/- 0.42 cal mol-1 K-1, respectively, for the human enzyme. Results for the bovine enzyme were statistically indistinguishable from those of the human enzyme. The entropy of activation of kcat for the human enzyme was further decomposed into partially compensating electrostatic(es) (delta S*es = +15.1 cal mol-1 K-1) and nonelectrostatic(nes) (delta S*nes = -19.1 cal mol-1 K-1) terms. Computer simulations of a formal kinetic mechanism for carbonic anhydrase II-catalyzed CO2 hydration show that 82% of the temperature effect on kcat can be attributed to the temperature effect on the intramolecular proton transfer step. The reported activation parameters are consistent with a substantial enzyme or active site solvent conformational change in the transition state of the intramolecular proton transfer step, and is consistent with the mechanism of proton transfer proposed by Venkatasubban and Silverman (Venkatasubban, K. S., and Silverman, D. N. (1980) Biochemistry 19, 4984-4989).  相似文献   

15.
The carbonic anhydrase (EC 4.2.1.1) of Rhodospirillum rubrum has been purified to apparent homogeneity and some of its properties have been determined. The enzyme was cytoplasmic and was found only in photosynthetically grown cells. It had a molecular weight of about 28,000, and was apparently composed of two equal subunits. The amino acid composition was similar to that of other reported carbonic anhydrases except that the R. rubrum enzyme contained no arginine. The isoelectric point of the enzyme was 6.2 and the pH optimum was 7.5. It required Zn(II) for stability and enzymatic activity. The K m(CO2) was 80 mM. Typical carbonic anhydrase inhibition patterns were found with the R. rubrum enzyme. Strong acetazolamide and sulfanilamide inhibition confirmed the importance of Zn(II) for enzymatic activity as did the anionic inhibitors iodide, and azide. Other inhibitors indicated that histidine, sulfhydryl, lysine and serine residues were important for enzymatic activity.Abbreviation CA carbonic anhydrase In memory of R. Y. Stanier  相似文献   

16.
Phospholipase C from the Dallas 1E strain of Legionella pneumophila serogroup 5 was purified from buffered yeast extract culture supernate by ion-exchange chromatography followed by fractionation by manganous chloride and ammonium sulphate precipitation steps. Enzyme activity was assayed by hydrolysis of p-nitrophenylphosphorylcholine and confirmed by release of radioactivity from tritiated L-alpha-dipalmitoylphosphatidylcholine labelled in the methyl groups of choline. After SDS-PAGE, the purified preparation yielded a single band upon Coomassie-blue staining. This protein migrated with an apparent Mr of 50,000-54,000. Phospholipase C activity was maximal at pH greater than or equal to 8.4 and was enhanced in the presence of sorbitol and of several nonionic detergents but was eliminated by SDS. EDTA, Cu2+, Fe2+ and Zn2+ inhibited enzyme activity, whereas Ba2+, Ca2+, Co2+, Mg2+ and Mn2+ restored activity to EDTA-treated material. No haemolytic activity was demonstrated with the purified enzyme.  相似文献   

17.
Collagenases (EC 3.4.24.3) from human skin, rat skin and rat uterus were inhibited by the chelating agents EDTA, 1,10-phenanthroline and tetraethylene pentamine in the presence of excess Ca2+, suggesting that a second metal ion participates in the activity of the enzyme. Collagenase inhibition by 1,10-phenanthroline could be both prevented and reversed by a number of transition metal ions, specifically Zn2+, Co2+, Fe2+ and Cu2+. However, Zn2+ is effective in five-fold lower molar concentrations (1-10(-4) M) than the other ions. Furthermore, Zn2+ was the only ion tested able to prevent and reverse the inhibition of collagenase by EDTA in the presence of excess Ca2+. Atomic absorption analysis of purified collagenase for Zn2+ showed that Zn2+ was present in the enzyme preparations, and that the metal co-purifies with collagenase during column chromatography.  相似文献   

18.
This study was designed to examine the effects of vitamin E on the levels of Zn, Mn, Cu, Fe, and carbonic anhydrase in rats with bleomycin-induced pulmonary fibrosis. Twenty-one male Wistar albino rats were randomly divided into three groups: bleomycin alone, bleomycin+vitamin E, and saline alone (control group). The bleomycin group was given 7.5 mg/kg body weight (single dose) bleomycin hydrochloride intratracheally. The bleomycin+vitamin E group was also instilled with bleomycin hydrochloride but received injections of α-tocopherol twice a week. The control group was treated with saline alone. Animals were sacrified 14 d after intratracheal instillation of bleomycin. Tissue Zn, Mn, Cu, Fe, and carbonic anhydrase activities were measured in the lung and liver. Lung Cu, Fe, and carbonic anhydrase activity increase in both experimental groups. Zn and Mn levels decreased, except for the Mn level in the bleomycin group. Liver Zn, Mn, and Cu levels decreased in both experimental groups compared to the control group, whereas Fe and carbonic anhydrase activity increased in comparison to the control group. However, the liver tissue Fe level decreased compared to the control group. In the histopathologic assesment of lung sections in the bleomycin+vitamin E group, partial fibrotic lesions were observed, but the histopathologic changes were much less severe compared to the bleomycin-treated group.  相似文献   

19.
Tu C  Rowlett RS  Tripp BC  Ferry JG  Silverman DN 《Biochemistry》2002,41(51):15429-15435
Catalysis of the dehydration of HCO(3)(-) by carbonic anhydrase requires proton transfer from solution to the zinc-bound hydroxide. Carbonic anhydrases in each of the alpha, beta, and gamma classes, examples of convergent evolution, appear to have a side chain extending into the active site cavity that acts as a proton shuttle to facilitate this proton transfer, with His 64 being the most prominent example in the alpha class. We have investigated chemical rescue of mutants in two of these classes in which a proton shuttle has been replaced with a residue that does not transfer protons: H216N carbonic anhydrase from Arabidopsis thaliana (beta class) and E84A carbonic anhydrase from the archeon Methanosarcina thermophila (gamma class). A series of structurally homologous imidazole and pyridine buffers were used as proton acceptors in the activation of CO(2) hydration at steady state and as proton donors of the exchange of (18)O between CO(2) and water at chemical equilibrium. Free energy plots of the rate constants for this intermolecular proton transfer as a function of the difference in pK(a) of donor and acceptor showed extensive curvature, indicating a small intrinsic kinetic barrier for the proton transfers. Application of Marcus rate theory allowed quantitative estimates of the intrinsic kinetic barrier which were near 0.3 kcal/mol with work functions in the range of 7-11 kcal/mol for mutants in the beta and gamma class, similar to results obtained for mutants of carbonic anhydrase in the alpha class. The low values of the intrinsic kinetic barrier for all three classes of carbonic anhydrase reflect proton transfer processes that are consistent with a model of very rapid proton transfer through a flexible matrix of hydrogen-bonded solvent structures sequestered within the active sites of the carbonic anhydrases.  相似文献   

20.
Cd2+ derivatives of human carbonic anhydrases I and II and bovine red cell carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) have been prepared. The metal ion in these derivatives is readily displaced by Zn2+. The Cd2+-carbonic anhydrases have appreciable 4-nitrophenyl acetate hydrolase activities. These activities increase with pH as if dependent on the basic form of a group with pKa near 10. The Cd2+-carbonic anhydrases also have significant CO2 hydration activities. The Cd2+ derivatives are strongly inhibited by monovalent anions. In particular, I- is a much more potent inhibitor of the Cd2+ enzymes than of the native enzymes. Acetazolamide (5-acetylamido-1,3,4-thiadiazole 2-sulfonamide) is also a strong inhibitor although its affinity for the Cd2+ enzyme is less than its affinity for the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号