首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evolution of the Hox/ParaHox gene clusters   总被引:7,自引:0,他引:7  
The Hox gene cluster is a guiding force within the field of Evolutionary Developmental Biology. In large part our understanding of this gene cluster comes from only a few model organisms in developmental biology. The situation is gradually changing. A comparative review of the organisation of the Hox and ParaHox gene clusters and, in particular, instances of cluster disintegration, leads us to the view that the phenomenon of Temporal Colinearity is the major constraining force in maintaining these gene clusters over such long evolutionary timespans.  相似文献   

2.
The rise and fall of Hox gene clusters   总被引:9,自引:0,他引:9  
Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.  相似文献   

3.
4.
5.
Hox clusters and bilaterian phylogeny   总被引:6,自引:0,他引:6  
A large Hox cluster comprising at least seven genes has evolved by gene duplications in the ancestors of bilaterians. It probably emerged from a mini-cluster of three or four genes that was present before the divergence of cnidarians and bilaterians. The comparison of Hox structural data in bilaterian phyla shows that the genes of the anterior part of the cluster have been more conserved than those of the posterior part. Some specific signature sequences, present in the form of signature residues within the homeodomain or conserved peptides outside the homeodomain, constitute phylogenetic evidence for the monophyly of protostomes and their division into ecdysozoans and lophotrochozoans. These conserved motifs may provide decisive arguments for the phylogenetic position of some enigmatic phyla.  相似文献   

6.
Hox and HOM: homologous gene clusters in insects and vertebrates   总被引:34,自引:0,他引:34  
M Akam 《Cell》1989,57(3):347-349
  相似文献   

7.
Lemons D  Paré A  McGinnis W 《PloS one》2012,7(2):e31365
The discovery of microRNAs has resulted in a major expansion of the number of molecules known to be involved in gene regulation. Elucidating the functions of animal microRNAs has posed a significant challenge as their target interactions with messenger RNAs do not adhere to simple rules. Of the thousands of known animal microRNAs, relatively few microRNA:messenger RNA regulatory interactions have been biologically validated in an normal organismal context. Here we present evidence that three microRNAs from the Hox complex in Drosophila (miR-10-5p, miR-10-3p, miR-iab-4-5p) do not have significant effects during embryogenesis on the expression of Hox genes that contain high confidence microRNAs target sites in the 3' untranslated regions of their messenger RNAs. This is significant, in that it suggests that many predicted microRNA-target interactions may not be biologically relevant, or that the outcomes of these interactions may be so subtle that mutants may only show phenotypes in specific contexts, such as in environmental stress conditions, or in combinations with other microRNA mutations.  相似文献   

8.

Background  

Ever since the theory about two rounds of genome duplication (2R) in the vertebrate lineage was proposed, the Hox gene clusters have served as the prime example of quadruplicate paralogy in mammalian genomes. In teleost fishes, the observation of additional Hox clusters absent in other vertebrate lineages suggested a third tetraploidization (3R). Because the Hox clusters occupy a quite limited part of each chromosome, and are special in having position-dependent regulation within the multi-gene cluster, studies of syntenic gene families are needed to determine the extent of the duplicated chromosome segments. We have analyzed in detail 14 gene families that are syntenic with the Hox clusters to see if their phylogenies are compatible with the Hox duplications and the 2R/3R scenario. Our starting point was the gene family for the NPY family of peptides located near the Hox clusters in the pufferfish Takifugu rubripes, the zebrafish Danio rerio, and human.  相似文献   

9.
Evolutionarily conserved non-coding genomic sequences represent a potentially rich source for the discovery of gene regulatory regions. Since these elements are subject to stabilizing selection they evolve much more slowly than adjacent non-functional DNA. These so-called phylogenetic footprints can be detected by comparison of the sequences surrounding orthologous genes in different species. Therefore the loss of phylogenetic footprints as well as the acquisition of conserved non-coding sequences in some lineages, but not in others, can provide evidence for the evolutionary modification of cis-regulatory elements. We introduce here a statistical model of footprint evolution that allows us to estimate the loss of sequence conservation that can be attributed to gene loss and other structural reasons. This approach to studying the pattern of cis-regulatory element evolution, however, requires the comparison of relatively long sequences from many species. We have therefore developed an efficient software tool for the identification of corresponding footprints in long sequences from multiple species. We apply this novel method to the published sequences of HoxA clusters of shark, human, and the duplicated zebrafish and Takifugu clusters as well as the published HoxB cluster sequences. We find that there is a massive loss of sequence conservation in the intergenic region of the HoxA clusters, consistent with the finding in [Chiu et al., PNAS 99 (2002) 5492]. The loss of conservation after cluster duplication is more extensive than expected from structural reasons. This suggests that binding site turnover and/or adaptive modification may also contribute to the loss of sequence conservation.  相似文献   

10.
Ogishima S  Tanaka H 《Gene》2007,387(1-2):21-30
Hox cluster has key roles in regulating the patterning of the antero-posterior axis in a metazoan embryo. It consists of the anterior, central and posterior genes; the central genes have been identified only in bilaterians, but not in cnidarians, and are responsible for archiving morphological complexity in bilaterian development. However, their evolutionary history has not been revealed, that is, there has been a "missing link". Here we show the evolutionary history of Hox clusters of 18 bilaterians and 2 cnidarians by using a new method, "motif-based reconstruction", examining the gain/loss processes of evolutionarily conserved sequences, "motifs", outside the homeodomain. We successfully identified the missing link in the evolution of Hox clusters between the cnidarian-bilaterian ancestor and the bilaterians as the ancestor of the central genes, which we call the proto-central gene. Exploring the correspondent gene with the proto-central gene, we found that one of the acoela Hox genes has the same motif repertory as that of the proto-central gene. This interesting finding suggests that the acoela Hox cluster corresponds with the missing link in the evolution of the Hox cluster between the cnidarian-bilaterian ancestor and the bilaterians. Our findings suggested that motif gains/diversifications led to the explosive diversity of the bilaterian body plan.  相似文献   

11.
12.
Hox clusters as models for vertebrate genome evolution   总被引:1,自引:0,他引:1  
The surprising variation in the number of Hox clusters and the genomic architecture within vertebrate lineages, especially within the ray-finned fish, reflects a history of duplications and subsequent lineage-specific gene loss. Recent research on the evolution of conserved non-coding sequences (CNS) in Hox clusters promises to reveal interesting results for functional and phenotypic diversification.  相似文献   

13.
Despite their homology and analogous function, the Hox gene clusters of vertebrates and invertebrates are subject to different constraints on their structural organization. This is demonstrated by a drastically different distribution of repetitive DNA elements in the Hox cluster regions. While gnathostomes have a strong tendency to exclude repetitive DNA elements from the inside of their Hox clusters, no such trend can be detected in the Hox gene clusters of protostomes. Repeats "invade" the gnathostome Hox clusters from the 5' and 3' ends while the core of the clusters remains virtually free of repetitive DNA. This invasion appears to be correlated with relaxed constraints associated with gene loss after cluster duplications.  相似文献   

14.
Hox cluster organization represents a valuable marker to study the effects of recent genome duplication in salmonid fish (25-100 Mya). Using polymerase chain reaction amplification of cDNAs, BAC library screening, and genome walking, we reconstructed 13 Hox clusters in the Atlantic salmon containing 118 Hox genes including 8 pseudogenes. Hox paralogs resulting from the genome duplication preceding the radiation of ray-finned fish have been much better preserved in salmon than in other model teleosts. The last genome duplication in the salmon lineage has been followed by the loss of 1 of the 4 HoxA clusters. Four rounds of genome duplication after the vertebrate ancestor salmon Hox clusters display the main organizational features of vertebrate Hox clusters, with Hox genes exclusively that are densely packed in the same orientation. Recently, duplicated Hox clusters have engaged a process of divergence, with several cases of pseudogenization or asymmetrical evolution of Hox gene duplicates, and a marked erosion of identity in noncoding sequences. Strikingly, the level of divergence attained strongly depends on the Hox cluster pairs rather than on the Hox genes within each cluster. It is particularly high between both HoxBb clusters and both HoxDa clusters, whereas both HoxBa clusters remained virtually identical. Positive selection on the Hox protein-coding sequences could not be detected.  相似文献   

15.
Alves S  Amorim A  Prata MJ 《Human genetics》2002,111(2):172-178
The promoter region of the human thiopurine methyltransferase (TPMT) gene contains a variable number of tandem repeats (VNTR) with three kind of motifs (A, B, and C) differing by the length of the unit core and nucleotide sequence. We have studied the structural variation within the VNTR alleles in two human populations and in samples from gorillas and chimpanzees. In humans, no intermingling of motifs was detected within the VNTR, and the sequences of the three core motifs remained remarkably unchanged, differences between alleles corresponding essentially to variations in the number of A and B repeats. The variation pattern in humans is consistent with an interpretation in which two contiguous genetic units (repeats A and B) behave evolutionarily according to the stepwise mutation model, as inferred from the population distribution profiles and from the molecular phylogenetic relationships among the VNTR alleles. However, the observation of a strong negative correlation between the numbers of A and B repeats also suggests that the regularity and/or independence of the mutational process has been disrupted to some extent by interactions between the A and B stretches. Selective pressure (the VNTR plays some role, although minor, in the TPMT function) or biased mutation are possible explanations. In gorillas and chimpanzees, several A-, B-, or C-like motifs were detected, but their arrangement within the VNTR alleles did not followed the regular pattern registered in humans and, particularly for the B-like motifs, a considerable sequence hypervariability was registered. Furthermore, the structural differences among non-human alleles were sufficiently numerous to render more plausible the assumption of the infinite allele model.  相似文献   

16.
The transposon TnTIR contains spnIR quorum-sensing system regulating sliding motility and the production of nuclease, biosurfactant, and prodigiosin in Serratia marcescens. Within TnTIR, a gene named spnT is upstream of and co-transcribed with spnI. SpnT is a cytoplasmic protein and its level peaks during early stationary phase. spnT over-expression resulted in inhibition of sliding motility and synthesis of prodigiosin, and biosurfactant similar to spnR. spnT but not spnR over-expression induced cell elongation and aberrant DNA replication in S. marcescens and Escherichia coli strains. In comparison with wild-type E. coli strain, over-expression of spnT in an E. coli priA and dnaC double-mutant strain did not lead to the aberrant cell morphology phenotypes, suggesting SpnT may act through the recombination-dependent DNA replication system. As spnT over-expression inhibited swarming but not swimming motility, SpnT may indirectly function as a negative regulator of surface-dependent migration and secondary metabolite production.  相似文献   

17.
18.
Expression of Hox genes located on different chromosomes is precisely regulated and synchronized during development. In order to test the hypothesis that the Hox loci might cluster in nuclear space in order to share regulatory components, we performed 3D FISH on cryosections of developing mouse embryos and differentiating embryoid bodies. We did not observe any instances of co-localization of 4 different Hox alleles. Instances of 2 different alleles touching each other were found in 20-47% of nuclei depending on the tissue. The frequency of such “kissing” events was not significantly different in cells expressing a high proportion of the Hox clusters when compared to cells expressing none or only a few Hox genes. We found that the HoxB and HoxC clusters, which are located in gene-rich regions, were involved more frequently in gene kissing in embryonic nuclei. In the case of HoxB, this observation correlated with the positioning of the corresponding chromosome towards the interior of the nucleus. Our results indicate that co-regulation of the different Hox clusters is not associated with co-localization of the loci at a single regulatory compartment and that the chromosomal context may influence the extent to which they contact each other in the nucleus.  相似文献   

19.
CpG islands are discrete regions of DNA with significantly greater frequencies of CpG doublets than bulk genomic DNA. They are most frequently associated with the 5'-ends of housekeeping genes and are involved in the regulation of their expression. In this study, the structure and evolution of CpG islands within genes of the myc family were evaluated with the protein-coding sequences of animals and their transducing viruses. These evaluations relied on a gene tree for the entire myc family to test the origins of CpG islands within their two protein-coding exons. Overall, CG-very rich and CG-rich islands are associated with exon 2 of the different myc genes of warm-blooded vertebrates and with exon 3 of the N-myc and s-myc sequences of mammals, but not birds. These overall distributions of well-developed islands can be related to the major transitions of the CG-rich genomes of warm-blooded vertebrates from the CG-poor ones of other animals. In turn, the greater variability of well-developed islands within exon 3 of the N-myc gene and among the different retrogenes of the myc family can be attributed to their reduced functional constraints, as evidenced by their limited and very restricted patterns of expression, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号