首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Link  Jana  Jantsch  Verena 《Chromosoma》2019,128(3):317-330

Vigorous chromosome movement during the extended prophase of the first meiotic division is conserved in most eukaryotes. The movement is crucial for the faithful segregation of homologous chromosomes into daughter cells, and thus for fertility. A prerequisite for meiotic chromosome movement is the stable and functional attachment of telomeres or chromosome ends to the nuclear envelope and their cytoplasmic coupling to the cytoskeletal forces responsible for generating movement. Important advances in understanding the components, mechanisms, and regulation of chromosome end attachment and movement have recently been made. This review focuses on insights gained from experiments into two major metazoan model organisms: the mouse, Mus musculus, and the nematode, Caenorhabditis elegans.

  相似文献   

2.
3.
The nematode Caenorhabditis elegans is widely used as a model organism to study cell and developmental biology. Quantitative proteomics of C. elegans is still in its infancy and, so far, most studies have been performed on adult worm samples. Here, we used quantitative mass spectrometry to characterize protein level changes across the four larval developmental stages (L1–L4) of C. elegans. In total, we identified 4130 proteins, and quantified 1541 proteins that were present across all four stages in three biological replicates from independent experiments. Using hierarchical clustering and functional ontological analyses, we identified 21 clusters containing proteins with similar protein profiles across the four stages, and highlighted the most overrepresented biological functions in each of these protein clusters. In addition, we used the dataset to identify putative larval stage‐specific proteins in each individual developmental stage, as well as in the early and late developmental stages. In summary, this dataset provides system‐wide analysis of protein level changes across the four C. elegans larval developmental stages, which serves as a useful resource for the C. elegans research community. MS data were deposited in ProteomeXchange ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the primary accession identifier PXD006676.  相似文献   

4.
Development of an open eyelid mutant in mus musculus   总被引:1,自引:0,他引:1  
  相似文献   

5.
Octopamine (OA) plays an important role in the regulation of a number of key processes in nematodes, including pharyngeal pumping, locomotion and egg-laying. However, while putative OA receptors can be tentatively identified in the Caenorhabditis elegans database, no OA receptors have been functionally characterized from any nematode. We have isolated two cDNAs, ser-2 and ser-2a, encoding putative C.elegans serotonin/OA receptors (C02D4.2, ser-2). The sequences of these cDNAs differ from that predicted by GeneFinder and lack 42 bp of exon 2. In addition, ser-2a appears to be alternatively spliced and lacks a predicted 23 amino acids in the third intracellular loop. COS-7 cells expressing SER-2 bind [3H]LSD in the low nM range and exhibit Kis for tyramine, octopamine and serotonin of 0.07, 2, and 13.7 micro m, respectively. Significantly, tyramine reduces forskolin-stimulated cAMP levels in HEK293 cells stably expressing SER-2 with an IC50 of about 360 nm, suggesting that SER-2 is a tyramine receptor.  相似文献   

6.
The purpose of this study was to isolate and characterize the GAGs from the wild type nematode Caenorhabditis elegans in preparation for the characterization of the transgenic form constructed by Link [Proc. Natl. Acad. Sci. USA 92 (1995) 9368] which expresses various forms of beta-peptide (or A4 peptide). This peptide forms deposits very similar to the ones found in the neuritic plaques and neurofibrillary tangles in Alzheimer disease (AD). Characterization has been accomplished by degradation with specific enzymes and analysis of the products by TLC and HPLC. The results were compared with earlier works and shown to differ in disaccharide content.  相似文献   

7.
Serotonin (5-HT) regulates a wide range of behaviors in Caenorhabditis elegans, including egg laying, male mating, locomotion and pharyngeal pumping. So far, four serotonin receptors have been described in the nematode C. elegans, three of which are G protein-coupled receptors (GPCR), (SER-1, SER-4 and SER-7), and one is an ion channel (MOD-1). By searching the C. elegans genome for additional 5-HT GPCR genes, we identified five further genes which encode putative 5-HT receptors, based on sequence similarities to 5-HT receptors from other species. Using loss-of-function mutants and RNAi, we performed a systematic study of the role of the eight GPCR genes in serotonin-modulated behaviors of C. elegans (F59C12.2, Y22D7AR.13, K02F2.6, C09B7.1, M03F4.3, F16D3.7, T02E9.3, C24A8.1). We also examined their expression patterns. Finally, we tested whether the most likely candidate receptors were able to modulate adenylate cyclase activity in transfected cells in a 5-HT-dependent manner. This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans. It provides a direct comparison of the expression patterns and functional roles for 5-HT receptors in C. elegans.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
9.
Identification of five laboratory strains (1-5) of putative Caenorhabditis briggsae was undertaken. Examination of the male bursal ray arrangement, mating tests with males of Caenorhabditis elegans, malate dehydrogenase zymograms, and SDS polyacrylamide electrophoresis demonstrated that strain 4 was C. briggsae and the others were C. elegans.  相似文献   

10.
The strains of Caenorhabditis elegans displaying low (LT) and high (HT1, HT2, and HT3) thermotolerance were obtained from the wild-type N2 strain by artificial selection for thermostability of locomotion and by natural selection in laboratory for thermotolerance of fertility under tolerable environmental temperature elevation. All these strains are new genetic variants that emerged during the experiment. The worms of strains HT2 and HT3 displayed an elevated upper temperature limit for reproduction (from 26 to 27.5°C), thermostability of locomotion at 36°C, and survival at 37°C as compared with the strain N2. The results have demonstrated that adaptation of C. elegans to high tmeperatures is an appropriate laboratory model for studying the mechanisms involved in the evolution of thermotolerance of poikilothermic Metazoa.  相似文献   

11.
We have identified and characterized 12 mutations in seven genes that affect the development of the Caenorhabditis elegans hindgut. We find that the mutations can disrupt the postembryonic development of the male-specific blast cells within the hindgut, the hindgut morphology in both males and hermaphrodites, and in some cases, the expression of a hindgut marker in hermaphrodite animals. Mutations in several of the genes also affect viability. On the basis of their mutant phenotypes, we propose that the genes fall into four distinct classes: (1) egl-5 is required for regional identity of the tail; (2) sem-4 is required for a variety of ectodermal and mesodermal cell types, including cells in the hindgut; (3) two genes, lin-49 and lin-59, affect development of many cells, including hindgut; and (4) three genes, mab-9, egl-38, and lin-48, are required for patterning fates within the hindgut, making certain hindgut cells different from others. We also describe a new allele of the Pax gene egl-38 that is temperature sensitive and affects the conserved beta-hairpin of the EGL-38 paired domain. Our results suggest that a combination of different factors contribute to normal C. elegans hindgut development.  相似文献   

12.
The lines of Caenorhabditis elegans displaying low (LT) and high (HT1, HT2, and HT3) thermotolerance were obtained from the wild line N2 by artificial selection for thermostability of locomotion and by natural selection in laboratory for thermotolerance of fertility under tolerable environmental temperature elevation. All these lines are new genetic variants that emerged during the experiment. The worms of lines HT2 and HT3 displayed an elevated upper temperature limit for reproduction (from 26 to 27.5 degrees C), thermostability of locomotion at 36 degrees C, and survival at 37 degrees C as compared with the line N2. The results have demonstrated that adaptation of C. elegans to high temperatures is an appropriate laboratory model for studying the mechanisms involved in the evolution of thermotolerance of poikilothermic Metazoa.  相似文献   

13.
Extensive in silico search of the genome of Caenorhabditis elegans revealed the presence of 33 genes coding for globins that are all transcribed. These globins are very diverse in gene and protein structure and are localized in a variety of cells, mostly neurons. The large number of C. elegans globin genes is assumed to be the result of multiple evolutionary duplication and radiation events. Processes of subfunctionalization and diversification probably led to their cell-specific expression patterns and fixation into the genome. To date, four globins (GLB-1, GLB-5, GLB-6, and GLB-26) have been partially characterized physicochemically, and the crystallographic structure of two of them (GLB-1 and GLB-6) was solved. In this article, a three-dimensional model was designed for the other two globins (GLB-5 and GLB-26), and overlays of the globins were constructed to highlight the structural diversity among them. It is clear that although they all share the globin fold, small variations in the three-dimensional structure have major implications on their ligand-binding properties and possibly their function. We also review here all the information available so far on the globin family of C. elegans and suggest potential functions.  相似文献   

14.
15.
One of the looming mysteries in signal transduction today is the question of how mechanical signals, such as pressure or mechanical force delivered to a cell, are interpreted to direct biological responses. All living organisms, and probably all cells, have the ability to sense and respond to mechanical stimuli. At the single-cell level, mechanical signaling underlies cell-volume control and specialized responses such as the prevention of poly-spermy in fertilization. At the level of the whole organism, mechanotransduction underlies processes as diverse as stretch-activated reflexes in vascular epithelium and smooth muscle; gravitaxis and turgor control in plants; tissue development and morphogenesis; and the senses of touch, hearing, and balance. Intense genetic, molecular, and elecrophysiological studies in organisms ranging from nematodes to mammals have highlighted members of the recently discovered DEG/ENaC family of ion channels as strong candidates for the elusive metazoan mechanotransducer. Here, we discuss the evidence that links DEG/ENaC ion channels to mechanotransduction and review the function of Caenorhabiditis elegans members of this family called degenerins and their role in mediating mechanosensitive behaviors in the worm.  相似文献   

16.
17.
Some mutants of Caenorhabditis elegans show altered patterns of ectopic binding with wheat germ agglutinin (WGA). Some of these mutants also have defects of morphogenesis and movement during development. To clarify the structures of WGA-ligands in C. elegans that may be involved in developmental events, we have analyzed glycan structures capable of binding WGA. We isolated glycoproteins from wild-type C. elegans by WGA-affinity chromatography, and analyzed their glycan structures by a combination of hydrazine degradation and fluorescent labeling. The glycoproteins had oligomannose-type and complex-type N-glycans that included agalacto-biantenna and agalacto-tetraantenna glycans. Although the complex-type glycans carried beta-GlcNAc residues at their non-reducing ends, they did not bind to the WGA-agarose-resin. Thus, it was suggested that these N-glycans were not responsible for WGA-binding of the isolated glycoproteins. Hydrazinolysis of the glycoproteins also released a considerable amount of GalNAc monosaccharide. It was surmised that N-acetylgalactosamine was derived from mucin-type O-glycans with the Tn-antigen structure (GalNAcalpha1-O-Ser/Thr). WGA-blotting assay of neoglycoproteins revealed that a cluster of Tn-antigens was a good ligand for WGA. These results suggested that the WGA-ligand in C. elegans is a cluster of alpha-GalNAc monosaccharides linked to mucin-like glycoprotein(s). The observations reported in this paper emphasize the possible significance of mucin-type O-glycans in the development of a multicellular organism.  相似文献   

18.
We have identified and characterized a monoclonal antibody, F2-P3E3, that recognizes a Caenorhabditis elegans apoptotic epitope expressed within phagocytic cells, which is conserved in four other nematode species. In C. elegans, F2-P3E3 staining requires both programmed cell death and phagocytosis. We show that the F2-P3E3 epitope is expressed within embryonic intestinal cells, which act as phagocytes but do not undergo programmed cell death. F2-P3E3 staining is present within LMP-1::GFP labeled organelles in the intestinal primordium and is coincident with persistent DNA that has been phagocytosed in nuc-1(-) embryos, suggesting that it labels phagosomes. While apoptotic events are typically isolated in C. elegans, F2-P3E3 staining is commonly found within adjacent cells. This observation suggests that F2-P3E3 might recognize an epitope expressed in multiple cells in response to signals from a single corpse. F2-P3E3 represents a new tool for studying cell death in C. elegans.  相似文献   

19.
20.
An ATM-like gene was identified in the genome of Caenorhabditis elegans. The putative product of the gene, termed Ce-atl-1 (C. elegans ATM-like 1) consists of 2514 amino acid residues. The C-terminal sequence, which contains a PI-3 kinase-like domain, showed good homology with the products of the gene MEC1/ESR1 from budding yeast, the rad3+ gene of fission yeast and mammalian ATM (ataxia-telangiectasia and rad3+ related) genes. The results of RNA-mediated interference indicated that the major phenotype associated with repression of Ce-atl-1 was lethality (approximately 50-80%) during early embryogenesis. Among the surviving progeny, males (XO animals) arose at a high frequency (2-30%). In addition, 5% of oocyte chromosomes demonstrated aneuploidy due to a defect in pre-meiotic chromosomal segregation. Gene expression analyses indicated that Ce-atl-1 mRNA was expressed in all larval stages and that its level increased about fivefold in the adult stage. The adult expression level was decreased in the glp-4 mutant, which is defective in germ line proliferation. Ce-atl-1 was strongly expressed in both the mitotic and meiotic cells of adult gonads. In summary, Ce-atl-1 appears to be important for early embryogenesis, and loss of its function results in a defect in chromosome segregation, similar to what has been observed for AT-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号