首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The biosynthesis of macrophage colony-stimulating factor 1 (CSF-1) was examined in mouse NIH-3T3 fibroblasts transfected with a retroviral vector expressing the 554-amino-acid product of a human 4-kilobase (kb) CSF-1 cDNA. Similar to results previously obtained with a 1.6-kb human cDNA that codes for a 256-amino-acid CSF-1 precursor, the results of the present study showed that NIH-3T3 cells expressing the product of the 4-kb clone produced biologically active human CSF-1 and were transformed by an autocrine mechanism when cotransfected with a vector containing a human c-fms (CSF-1 receptor) cDNA. The 4-kb CSF-1 cDNA product was synthesized as an integral transmembrane glycoprotein that was assembled into disulfide-linked dimers and rapidly underwent proteolytic cleavage to generate a soluble growth factor. Although the smaller CSF-1 precursor specified by the 1.6-kb human cDNA was stably expressed as a membrane-bound glycoprotein at the cell surface and was slowly cleaved to release the extracellular growth factor, the cell-associated product of the 4-kb clone was efficiently processed to the secreted form and was not detected on the plasma membrane. Digestion with glycosidic enzymes indicated that soluble CSF-1 encoded by the 4-kb cDNA contained both asparagine(N)-linked and O-linked carbohydrate chains, whereas the product of the 1.6-kb clone had only N-linked oligosaccharides. Removal of the carbohydrate indicated that the polypeptide chain of the secreted 4-kb cDNA product was longer than that of the corresponding form encoded by the smaller clone. These differences in posttranslational processing may reflect diverse physiological roles for the products of the two CSF-1 precursors in vivo.  相似文献   

11.
Cross-talk between integrin-mediated adhesion and growth factors has been described in many recent studies; however, the underlying mechanisms remain incompletely understood. We report here that detachment of cells from the extracellular matrix induced a decrease in both the autophosphorylation and protein levels of the platelet-derived growth factor receptor beta (PDGF-R beta), which was completely reversed upon replating cells on fibronectin. The effect occurred in all cells examined but to a greater extent in primary fibroblasts compared with established cell lines. Decreased PDGF-R levels in suspended cells correlated with ubiquitination of the PDGF-R and was blocked by treatment with inhibitors of the proteasome pathway. Unlike PDGF-induced down-regulation, detachment-induced degradation did not require receptor autophosphorylation, internalization, or tyrosine kinase activity. We conclude that cell detachment results in cellular desensitization to PDGF that is mediated by degradation of the PDGF-R via a novel ubiquitin-dependent pathway.  相似文献   

12.
As human fibroblasts in culture senesce their response to platelet-derived growth factor (PDGF) becomes attenuated. To clarify at which level such cells are blocked in the pre-replicative part of the cell cycle, we have analysed PDGF-induced pre-replicative events in senescent (phase III) cultures. We found that phase III cells retain a normal number of PDGF receptors and that these are functional with regard to PDGF-induced receptor autophosphorylation. Phase III cells also respond to PDGF by rapid actin reorganization and increased levels of c-fos and c-myc mRNA, similar to growth-arrested phase II fibroblasts. However, the expression of the nuclear antigen K-67, which in phase II cell is induced in S-phase and continues to be expressed throughout the cell cycle, is not induced in phase III cells in response to PDGF. We conclude that phase III human fibroblasts, although blocked with regard to proliferation, still retain a functional growth factor receptor system, and display early responses when exposed to growth factors, such as changes in the cytoskeleton and the expression of proto-oncogenes.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Stimulation of the proliferation of human skin fibroblasts by platelet-derived growth factor increased the binding and degradation of low-density lipoproteins at cell densities of 2000-30,000 cells/cm2. Binding and degradation of low-density lipoprotein was an inverse function of cell density in both proliferating and quiescent cells, indicating that the effect of cell density on the LDL receptor has proliferation-dependent and proliferation-independent components. The effect of medium conditioned by confluent fibroblasts on LDL metabolism was tested to determine if the effects of cell density on LDL metabolism might be mediated by cellular secretion products. Fibroblast-conditioned medium increased LDL metabolism, suggesting secretion products do not mediate these effects of cell density. These data indicate that regulation of the low-density lipoprotein receptor is not a simple on/off response to growth stimulation, but is responsive to extracellular cues such as cell density.  相似文献   

20.
The goal of our studies was to characterize the interrelationship between extracellular matrix organization and fibroblast proliferation in response to growth factors. We compared fibroblasts in monolayer culture with cells in contracted collagen matrices that were mechanically stressed or relaxed. In response to platelet-derived growth factor (PDGF), DNA synthesis by fibroblasts in mechanically relaxed collagen matrices was 80-90% lower than in monolayer culture and 50% lower than in mechanically stressed matrices. Fibroblasts in monolayer and contracted collagen matrix cultures contained similar levels of PDGF receptors, but differed in their autophosphorylation response. Cells in mechanically relaxed matrices showed lowest levels of autophosphorylation, 90% less than cells in monolayer culture. Experiments comparing receptor expression and capacity for PDGF- stimulated autophosphorylation showed that cells in mechanically relaxed collagen matrices never developed normal receptor autophosphorylation. Furthermore, when mechanically stressed collagen matrices were switched to mechanically relaxed conditions, capacity for receptor autophosphorylation decreased within 1-2 h and remained low. Based on immunomicroscopic observations and studies on down-regulation of receptors by PDGF binding, it appeared that most PDGF receptors in monolayer or contracted collagen matrix cultures were localized on the cell surface and accessible to PDGF binding. In related studies, we found that EGF receptors of fibroblasts in mechanically relaxed collagen matrices also showed low levels of autophosphorylation in response to EGF treatment. Based on these results, we suggest that mechanical interactions between cells and their surrounding matrix provide regulatory signals that modulate autophosphorylation of growth factor receptors and cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号