首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 184 毫秒
1.
用于分化为多种类型细胞的多能干细胞(PSC)体外培养技术已被广泛应用于生物学领域中.由PSC分化而来的肾脏类器官可基本还原生物体内肾脏的组织结构和部分功能,在肾脏疾病模型研究和药物筛选中有重要作用,继续改善肾脏类器官的结构、功能和成熟度将会对肾脏再生治疗提供极大的帮助.研究肾脏类器官的重点在于体外准确模拟体内肾脏的发育...  相似文献   

2.
近年来多能干细胞(PSCs)的体外培养与分化技术发展迅速,并广泛应用于再生医学和发育生物学等领域。PSCs能够在体外神经诱导的条件下分化为类神经管模型,这为探索体内早期神经发育与中枢神经系统发育疾病的形成机制提供了全新的实验平台。本文总结了近年来应用小鼠和人PSCs建立体外类神经管模型的研究进展,其中体外模型主要包括在不同培养体系下诱导获得的二维(2D)与三维(3D)类神经管模型,并针对早期类神经管模型在神经系统发育性疾病机制研究中的前景和挑战作进一步探讨,同时为疾病预防和治疗提供新的思路。  相似文献   

3.
诱导多能干细胞 (Induced pluripotent stem cells,iPSCs) 是通过体细胞重编程得到类似胚胎干细胞特性的一种细胞类型。通过iPSCs的体外分化,可以了解巨噬细胞的进化历史和各种特性。iPSCs来源的巨噬细胞不仅是药物筛选的良好模型,也是进行免疫治疗的重要手段。本文综述了近年来iPSCs及其向巨噬细胞分化的相关研究进展、所面临的问题以及未来的发展方向。  相似文献   

4.
诱导多能干细胞(induced pluripotent stem cells,iPSCs)是利用细胞重编程技术人工获得的与胚胎干细胞(embryonic stem cells,ESCs)功能类似的细胞,能分化成包括三胚层在内的所有细胞类型,并且规避了ESCs的伦理学争议和移植后的免疫排斥问题,具有十分广阔的应用前景。对iPSCs体外诱导为生殖细胞所用的诱导物及其诱导效果进行了综述,生殖细胞发育机制的研究有望促进未来生殖和发育技术的进步。  相似文献   

5.
目前,体外生成人红细胞的实验技术较为复杂,为优化诱导步骤,采用两步法将人多能干细胞诱导分化为红细胞。首先,利用人多能干细胞(包括Rh阴性A型的脐带间充质干细胞(hUCMSC~(Rh-A))和人iPS(hiPS)细胞)在BVF培养液中进行诱导分化得到CD31~~+和CD34~+的阳性细胞群。经PCR和流式细胞仪检测CD31和CD34的表达发现,hUCMSC~(Rh-A)细胞诱导得到的CD31和CD34阳性细胞率分别是5.3%和22.7%;hiPS细胞诱导得到的CD31和CD34阳性细胞率分别是31.2%和8.2%。第二步,将获得的CD31~+和CD34~+的阳性细胞群在多种生长因子的作用下经过36 d诱导,分化为成熟红细胞。经吉姆萨染色检测得到的红细胞在形态和大小上与正常人红细胞相近,且存在血细胞去核的现象。荧光定量RT-PCR检测到了globin的表达,其中β-globin的表达量占20%以上。将得到的红细胞收集到离心管中,自然沉降后可见红色的红细胞沉淀。上述研究为大量制备人红细胞提供了新的有效的技术方法。  相似文献   

6.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

7.
胚胎干细胞(embryonic stem cells,ESCs)具有自我更新、无限增殖和多向分化的特性,包括分化成心脏组织的多种类型细胞。经体细胞重编程产生的诱导多能干细胞(induced pluripotent stem cells,iPS)也被证明有类似胚胎干细胞的特性。但这些多能干细胞向心肌细胞自发分化的效率非常低,因此,如何有效地诱导这些多能干细胞向心肌细胞的定向分化对深入认识心肌发生发育的关键调控机制和实现其在药物发现和再生医学,如心肌梗塞、心力衰竭的细胞治疗以及心肌组织工程中的应用均具有非常重要的意义。该文重点综述了近年来胚胎干细胞及诱导多能干细胞向心肌细胞分化和调控的研究进展,并探讨了这一研究领域亟待解决的关键问题和这些多能干细胞的应用前景。  相似文献   

8.
生殖健康是生命科学领域关注的核心之一,各种原因所致男性不育亟待解决,然而由于伦理限制等原因,缺少合适的具有人类遗传背景的研究模型开展研究。胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)均属于多能干细胞,具有多向分化潜能。一方面,可利用ESCs?/?iPSCs向生殖细胞分化的模型研究人类生殖细胞的发育规律,另一方面,在此基础上,可建立带有人类疾病遗传背景的iPSCs模型,体外诱导其向雄性生殖细胞分化,利用该模型研究男性不育的发病机制。由于精子在体内的形成遵循一定规律,体外环境中不同发育阶段的生殖细胞在不同诱导因子作用下才可稳定地往下一阶段定向分化,因此,诱导ESCs?/?iPSCs向雄性生殖细胞方向分化时,诱导因子的种类和加入时间的选择应根据生殖细胞的体内发育特征而定,并且在诱导的不同阶段循序加入,以此模拟精子在体内的形成过程,进而更好地研究男性不育的发病机制。本文将对多能干细胞向雄性生殖细胞定向分化的常用诱导因子及存在问题和展望进行综述,为相关研究的开展提供借鉴。  相似文献   

9.
房波  宋后燕 《生命的化学》2008,28(3):242-244
通过逆转录病毒将4个基因(Oct4 、 Sox2、c-Myc和Klf4)导入小鼠胚胎成纤维细胞 (mouse embryonic fibroblast, MEF)中,能诱导形成胚胎干细胞样特性的诱导多能干(induced pluripotent stem, iPS)细胞.人类iPS细胞的成功构建开拓了广泛的应用前景.本文简要综述了 iPS细胞的基因筛选,转导基因的选择以及iPS细胞的表观遗传特性等.  相似文献   

10.
诱导多能干细胞(Induced pluripotent stem cells,i PSCs)是利用特定的转录因子诱导体细胞获得的,像胚胎干细胞一样,可以进行无限的自我更新,并具有分化成三个胚层的能力。iPSC有可能提供无限的自体细胞治疗,目前研究已经证实,不同种类疾病的患者提供的成体细胞诱导后可产生种类繁多的iPSC,这项技术给目前无有效治疗手段的多类疾病带来了治疗的希望,并有可能避免利用胚胎干细胞(embryonic stem cells,ESCs)治疗面临的伦理问题和免疫排斥反应。本文回顾iPSC技术优化过程,着重关注应用i PSC建立细胞模型、进行细胞治疗的进展,并探讨iPSC在基础研究及临床应用中遇到的挑战。  相似文献   

11.
Mesenchymal stem cells(MSCs)have the potential for use in cell-based regenerative therapies.Currently,hundreds of clinical trials are using MSCs for the treatment of various diseases.However,MSCs are low in number in adult tissues;they show heterogeneity depending upon the cell source and exhibit limited proliferative potential and early senescence in in vitro cultures.These factors negatively impact the regenerative potential of MSCs and therefore restrict their use for clinical applications.As a result,novel methods to generate induced MSCs(iMSCs)from induced pluripotent stem cells have been explored.The development and optimization of protocols for generation of iMSCs from induced pluripotent stem cells is necessary to evaluate their regenerative potential in vivo and in vitro.In addition,it is important to compare iMSCs with primary MSCs(isolated from adult tissues)in terms of their safety and efficacy.Careful investigation of the properties of iMSCs in vitro and their long term behavior in animals is important for their translation from bench to bedside.  相似文献   

12.
Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.  相似文献   

13.
14.
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are promising sources for hematopoietic cells due to their unlimited growth capacity and the pluripotency. Dendritic cells (DCs), the unique immune cells in the hematopoietic system, can be loaded with tumor specific antigen and used as vaccine for cancer immunotherapy. While autologous DCs from peripheral blood are limited in cell number, hPSC-derived DCs provide a novel alternative cell source which has the potential for large scale production. This review summarizes recent advances in differentiating hPSCs to DCs through the intermediate stage of hematopoietic stem cells. Step-wise growth factor induction has been used to derive DCs from hPSCs either in suspension culture of embryoid bodies (EBs) or in co-culture with stromal cells. To fulfill the clinical potential of the DCs derived from hPSCs, the bioprocess needs to be scaled up to produce a large number of cells economically under tight quality control. This requires the development of novel bioreactor systems combining guided EB-based differentiation with engineered culture environment. Hence, recent progress in using bioreactors for hPSC lineage-specific differentiation is reviewed. In particular, the potential scale up strategies for the multistage DC differentiation and the effect of shear stress on hPSC differentiation in bioreactors are discussed in detail.  相似文献   

15.
Human pluripotent stem cells(hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are promising sources for hematopoietic cells due to their unlimited growth capacity and the pluripotency. Dendritic cells(DCs), the unique immune cells in the hematopoietic system, can be loaded with tumor specific antigen and used as vaccine for cancer immunotherapy. While autologous DCs from peripheral blood are limited in cell number, hPSC-derived DCs provide a novel alternative cell source which has the potential for large scale production. This review summarizes recent advances in differentiating hPSCs to DCs through the intermediate stage of hematopoietic stem cells. Step-wise growth factor induction has been used to derive DCs from hPSCs either in suspension cultureof embryoid bodies(EBs) or in co-culture with stromal cells. To fulfill the clinical potential of the DCs derived from hPSCs, the bioprocess needs to be scaled up to produce a large number of cells economically under tight quality control. This requires the development of novel bioreactor systems combining guided EB-based differentiation with engineered culture environment. Hence, recent progress in using bioreactors for hPSC lineage-specific differentiation is reviewed. In particular, the potential scale up strategies for the multistage DC differentiation and the effect of shear stress on hPSC differentiation in bioreactors are discussed in detail.  相似文献   

16.
17.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

18.
Neural cells differentiated from pluripotent stem cells(PSCs), including both embryonic stem cells and induced pluripotent stem cells, provide a powerful tool for drug screening, disease modeling and regenerative medicine. High-purity oligodendrocyte progenitor cells(OPCs) and neural progenitor cells(NPCs) have been derived from PSCs recently due to the advancements in understanding the developmental signaling pathways. Extracellular matrices(ECM) have been shown to play important roles in regulating the survival, proliferation, and differentiation of neural cells. To improve the function and maturation of the derived neural cells from PSCs, understanding the effects of ECM over the course of neural differentiation of PSCs is critical. During neural differentiation of PSCs, the cells are sensitive to the properties of natural or synthetic ECMs, including biochemical composition, biomechanical properties, and structural/topographical features. This review summarizes recent advances in neural differentiation of humanPSCs into OPCs and NPCs, focusing on the role of ECM in modulating the composition and function of the differentiated cells. Especially, the importance of using three-dimensional ECM scaffolds to simulate the in vivo microenvironment for neural differentiation of PSCs is highlighted. Future perspectives including the immediate applications of PSC-derived neural cells in drug screening and disease modeling are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号