共查询到20条相似文献,搜索用时 15 毫秒
1.
S W Whiteheart M Brunner D W Wilson M Wiedmann J E Rothman 《The Journal of biological chemistry》1992,267(17):12239-12243
Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) are required for the binding of N-ethylmaleimide-sensitive fusion protein (NSF) to Golgi membranes and are, therefore, required for intra-Golgi transport. We report the existence of distinct alpha/beta-SNAP and gamma-SNAP-binding sites in Golgi membranes that appear to be part of the same receptor complex. Cross-linking studies with alpha-SNAP demonstrate that an integral membrane protein of between 30-40 kDa is the alpha-SNAP binding component of the multi-SNAP receptor complex. These data suggest that SNAPs function by independently binding to a multi-SNAP membrane-receptor complex, thereby activating them to serve as adaptors for the targeting of NSF. 相似文献
2.
Behrendorff N Dolai S Hong W Gaisano HY Thorn P 《The Journal of biological chemistry》2011,286(34):29627-29634
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion. 相似文献
3.
PDZ domains are involved in the scaffolding and assembly of multi-protein complexes at various subcellular sites. We describe here the isolation and characterization of a novel PDZ domain-containing protein that localizes to the Golgi apparatus. Using an in silico cloning approach, we have identified and isolated a cDNA encoding a ubiquitously expressed 59-kDa protein that we call FIG. It is composed of two coiled coil regions, a leucine zipper, and a single PDZ domain. Cytological studies using indirect immunofluorescence microscopy revealed that FIG is a peripheral protein that uses one of its coiled coil domains to localize to the Golgi apparatus. To ascertain the modalities of this Golgi localization, the same coiled coil region was tested for its ability to interact with a panel of coiled coil domain-containing integral membrane Golgi proteins. Using a series of GST fusion protein binding assays, co-immunofluorescence and co-immunoprecipitation experiments, we show that FIG specifically binds to the coiled coil domain-containing Q-SNARE (Q-soluble NSF attachment protein receptor) protein syntaxin 6 both in vitro and in vivo. The structural features of FIG and its interaction with a SNARE protein suggest that FIG may play a role in membrane vesicle trafficking. This is the first example of a PDZ domain-containing peripheral protein that localizes to the Golgi through a coiled coil-mediated interaction with a resident membrane protein. Our results broaden the scope of PDZ domain-mediated functions. 相似文献
4.
5.
This study investigated the effect of soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) on the fusion of egg L-α-phosphatidylcholine bilayers using atomic force microscope (AFM) spectroscopy. AFM measurements of the fusion force under compression were acquired to reveal the energy landscape of the fusion process. A single main energy barrier governing the fusion process was identified in the absence and presence of SNAREs in the bilayers. Under compression, a significant downward shift in the fusion dynamic force spectrum was observed when cognate v- and t-SNAREs were present in the opposite bilayers. The presence of vesicle-associated membrane protein (VAMP) and binary syntaxin and SNAP 25 in the apposed bilayers resulted in a reduction in the height of the activation potential by ∼1.3 kBT and a >2-fold increase in the width of the energy barrier. The widening of the energy barrier in the presence SNAREs is interpreted as an increase in the compressibility of the membranes, which translates to a greater ease in the bilayer deformation and subsequently the fusion of the membranes under compression. Facilitation of membrane fusion was observed only when SNAREs were present in both bilayers. Moreover, addition of the soluble cytoplasmic domain of VAMP, which interferes with the interaction between opposing v- and t-SNAREs, prevented such facilitation. These observations implicated the interaction between the cytoplasmic domains of opposing SNAREs in the observed fusion facilitation, possibly by destabilizing the bilayers through pulling on their transmembrane segments. Our AFM compression measurements revealed that SNARE-mediated membrane fusion proceeded through a sequence of two ∼5 nm collapses of the membrane, an observation that is consistent with the existence of a hemifused state during the fusion process. 相似文献
6.
Thurmond DC Gonelle-Gispert C Furukawa M Halban PA Pessin JE 《Molecular endocrinology (Baltimore, Md.)》2003,17(4):732-742
The actin monomer sequestering agent latrunculin B depolymerized beta-cell cortical actin, which resulted in increased glucose-stimulated insulin secretion in both cultured MIN6 beta-cells and isolated rat islet cells. In perifused islets, latrunculin B treatment increased both first- and second-phase glucose-stimulated insulin secretion without any significant effect on total insulin content. This increase in secretion was independent of calcium regulation because latrunculin B also potentiated calcium-stimulated insulin secretion in permeabilized MIN6 cells. Confocal immunofluorescent microscopy revealed a redistribution of insulin granules to the cell periphery in response to glucose or latrunculin B, which correlated with a reduction in phalloidin staining of cortical actin. Moreover, the t-SNARE [target membrane soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor] proteins Syntaxin 1 and SNAP-25 coimmunoprecipitated polymerized actin from unstimulated MIN6 cells. Glucose stimulation transiently decreased the amount of actin coimmunoprecipitated with Syntaxin 1 and SNAP-25, and latrunculin B treatment fully ablated the coimmunoprecipitation. In contrast, the actin stabilizing agent jasplakinolide increased the amount of actin coimmunoprecipitated with the t-SNARE complex and prevented its dissociation upon glucose stimulation. These data suggest a mechanism whereby glucose modulates beta-cell cortical actin organization and disrupts the interaction of polymerized actin with the plasma membrane t-SNARE complex at a distal regulatory step in the exocytosis of insulin granules. 相似文献
7.
N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion 总被引:18,自引:2,他引:16 下载免费PDF全文
《The Journal of cell biology》1994,126(4):945-954
The NEM-sensitive fusion protein, NSF, together with SNAPs (soluble NSF attachment proteins) and the SNAREs (SNAP receptors), is thought to be generally used for the fusion of transport vesicles to their target membranes. NSF is a homotrimer whose polypeptide subunits are made up of three distinct domains: an amino-terminal domain (N) and two homologous ATP-binding domains (D1 and D2). Mutants of NSF were produced in which either the order or composition of the three domains were altered. These mutants could not support intra-Golgi transport, but they indicated that the D2 domain was required for trimerization of the NSF subunits. Mutations of the first ATP-binding site that affected either the binding (K266A) or hydrolysis (E329Q) of ATP completely eliminated NSF activity. The hydrolysis mutant was an effective, reversible inhibitor of Golgi transport with an IC50 of 125 ng/50 microliters assay. Mutants in the second ATP-binding site (binding, K549A; hydrolysis, D604Q) had either 14 or 42% the specific activity of the wild-type protein, respectively. Using coexpression of an inactive mutant with wild-type subunits, it was possible to produce a recombinant form of trimeric NSF that contained a mixture of subunits. The mixed NSF trimers were inactive, even when only one mutant subunit was present, suggesting that NSF action requires each of the three subunits in a concerted mechanism. These studies demonstrate that the ability of the D1 domain to hydrolyze ATP is required for NSF activity and, therefore is required for membrane fusion. The D2 domain is required for trimerization, but its ability to hydrolyze ATP is not absolutely required for NSF function. 相似文献
8.
9.
10.
Retrovirus assembly is a complex process that requires the orchestrated participation of viral components and host-cell factors. The concerted movement of different viral proteins to specific sites in the plasma membrane allows for virus particle assembly and ultimately budding and maturation of infectious virions. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins constitute the minimal machinery that catalyzes the fusion of intracellular vesicles with the plasma membrane, thus regulating protein trafficking. Using siRNA and dominant negative approaches we demonstrate here that generalized disruption of the host SNARE machinery results in a significant reduction in human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus particle production. Further analysis of the mechanism involved revealed a defect at the level of HIV-1 Gag localization to the plasma membrane. Our findings demonstrate for the first time a role of SNARE proteins in HIV-1 assembly and release, likely by affecting cellular trafficking pathways required for Gag transport and association with the plasma membrane. 相似文献
11.
Myristoylation of ARF family GTPases is required for their association with Golgi and endosomal membranes, where they regulate protein sorting and the lipid composition of these organelles. The Golgi-localized ARF-like GTPase Arl3p/ARP lacks a myristoylation signal, indicating that its targeting mechanism is distinct from myristoylated ARFs. We demonstrate that acetylation of the N-terminal methionine of Arl3p requires the NatC N(alpha)-acetyltransferase and that this modification is required for its Golgi localization. Chemical crosslinking and fluorescence microscopy experiments demonstrate that localization of Arl3p also requires Sys1p, a Golgi-localized integral membrane protein, which may serve as a receptor for acetylated Arl3p. 相似文献
12.
Conkright JJ Bridges JP Na CL Voorhout WF Trapnell B Glasser SW Weaver TE 《The Journal of biological chemistry》2001,276(18):14658-14664
Proteolytic processing of surfactant protein C (SP-C) proprotein in multivesicular bodies of alveolar type II cells results in a 35-residue mature peptide, consisting of a transmembrane domain and a 10-residue extramembrane domain. SP-C mature peptide is stored in lamellar bodies (a lysosomal-like organelle) and secreted with surfactant phospholipids into the alveolar space. This study was designed to identify the peptide domain of SP-C required for sorting and secretion of this integral membrane peptide. Deletion analyses in transiently transfected PC12 cells and isolated mouse type II cells suggested the extramembrane domain of mature SP-C was cytosolic and sufficient for sorting to the regulated secretory pathway. Intratracheal injection of adenovirus encoding SP-C mature peptide resulted in secretion into the alveolar space of wild type mice but not SP-C (-/-) mice. SP-C secretion in null mice was restored by the addition of the N-terminal propeptide. The cytosolic domain, consisting of the N- terminal propeptide and extramembrane domain of mature SP-C peptide, supported secretion of the transmembrane domain of platelet-derived growth factor receptor. Collectively, these studies indicate that the N-terminal propeptide of SP-C is required for intracellular sorting and secretion of SP-C. 相似文献
13.
14.
The activity of Golgi transport vesicles depends on the presence of the N-ethylmaleimide-sensitive factor (NSF) and a soluble NSF attachment protein (alpha SNAP) during vesicle formation 下载免费PDF全文
An assay designed to measure the formation of functional transport vesicles was constructed by modifying a cell-free assay for protein transport between compartments of the Golgi (Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. 1984. Cell. 39:405-416). A 35-kD cytosolic protein that is immunologically and functionally indistinguishable from alpha SNAP (soluble NSF attachment protein) was found to be required during vesicle formation. SNAP, together with the N-ethylmaleimide-sensitive factor (NSF) have previously been implicated in the attachment and/or fusion of vesicles with their target membrane. We show that NSF is also required during the formation of functional vesicles. Strikingly, we found that after vesicle formation, the NEM-sensitive function of NSF was no longer required for transport to proceed through the ensuing steps of vesicle attachment and fusion. In contrast to these functional tests of vesicle formation, SNAP was not required for the morphological appearance of vesicular structures on the Golgi membranes. If SNAP and NSF have a direct role in transport vesicle attachment and/or fusion, as previously suggested, these results indicate that these proteins become incorporated into the vesicle membranes during vesicle formation and are brought to the fusion site on the transport vesicles. 相似文献
15.
Meiringer CT Rethmeier R Auffarth K Wilson J Perz A Barlowe C Schmitt HD Ungermann C 《The Journal of biological chemistry》2011,286(28):25039-25046
Retrograde vesicular transport from the Golgi to the ER requires the Dsl1 tethering complex, which consists of the three subunits Dsl1, Dsl3, and Tip20. It forms a stable complex with the SNAREs Ufe1, Use1, and Sec20 to mediate fusion of COPI vesicles with the endoplasmic reticulum. Here, we analyze molecular interactions between five SNAREs of the ER (Ufe1, Use1, Sec20, Sec22, and Ykt6) and the Dsl1 complex in vitro and in vivo. Of the two R-SNAREs, Sec22 is preferred over Ykt6 in the Dsl-SNARE complex. The NSF homolog Sec18 can displace Ykt6 but not Sec22, suggesting a regulatory function for Ykt6. In addition, our data also reveal that subunits of the Dsl1 complex (Dsl1, Dsl3, and Tip20), as well as the SNAREs Ufe1 and Sec20, are ER-resident proteins that do not seem to move into COPII vesicles. Our data support a model, in which a tethering complex is stabilized at the organelle membrane by binding to SNAREs, recognizes the incoming vesicle via its coat and then promotes its SNARE-mediated fusion. 相似文献
16.
L Winqvist L Eriksson G Dallner B Ersson 《Biochemical and biophysical research communications》1976,68(3):1020-1026
Four subunits of the acetylcholine receptor molecule, obtained from the electric organ of , have been isolated using polyacrylamide gel electrophoresis, and assayed by titration with a fluorescent lanthanide, terbium, and by affinity-labeling with -(-maleimido)benzyl [trimethyl-3H] ammonium iodide. The site with which the activator-analogue affinity label reacts, as well as the terbium-binding sites, are mainly associated with the smallest of the subunits of an apparent molecular weight of 40,000. Calcium competes with terbium for these binding sites. The affinity for terbium is the same in the intact molecule as in the subunit (KTb ? 19 ± 1 μM), but the affinity for calcium decreases by a factor of 4 (KCa ? 4 mM) in the subunit. Hydrolysis of the receptor, catalyzed by trypsin and chymotrypsin, to peptides with an apparent molecular weight of 8000 or less, does not affect the terbium-binding sites. These experiments indicate that the binding sites for neural activators and for calcium are associated with the same subunit, and that the terbium- and calcium-binding sites reflect structural properties of the polypeptide chain rather than the three-dimensional structure of the protein. 相似文献
17.
M Weidenhaupt F Bruckert M Louwagie J Garin M Satre 《European journal of biochemistry》2000,267(7):2062-2070
The soluble N-ethylmaleimide-sensitive-factor-attachment proteins (SNAP) are eukaryotic soluble proteins required for membrane fusion. Based on their initial identification in bovine brain cytosol, they are divided in alpha/beta and gamma subfamilies. SNAPs act as adapters between N-ethylmaleimide-sensitive factor (NSF), a hexameric ATPase, and membrane SNARE proteins (SNAP receptors). Within the NSF/SNAP/SNARE complex, SNAPs contribute to the catalysis of an ATP-driven conformational change in the SNAREs, resulting in dissociation of the complex. We have constructed a Dictyostelium discoideum strain overexpressing a c-myc-tagged form of D. discoideum NSF (NSF-myc). Its immunoprecipitation from detergent-solubilized membrane extracts reveals two associated polypeptides with apparent molecular masses of 33 and 36 kDa (p33 and p36) that are absent in NSF-myc immunoprecipitates from cytosol. Analysis of trypsin-digested peptides by microsequencing and mass spectrometry and comparison with cDNA sequences identify p33 and p36 as the D. discoideum homologues of alpha- and gamma-SNAP, respectively. The alpha-/gamma-SNAP molar ratio is close to 3 in vegetative amoebae from this organism. The molecular identification of gamma-SNAP in plants (Arabidopsis thaliana) and insects (Drosophila melanogaster) documents, for the first time, the wide distribution of the gamma subtype. Altogether, these results suggest a specific role for gamma-SNAP, distinct from that of alpha-SNAP. 相似文献
18.
19.
The neutrophil glycoprotein Mo1 is an integral membrane protein of plasma membranes and specific granules 总被引:1,自引:0,他引:1
K B Stevenson W M Nauseef R A Clark 《Journal of immunology (Baltimore, Md. : 1950)》1987,139(11):3759-3763
The glycoprotein Mo1 has previously been demonstrated to be on the cell surface and in the specific granule fraction of neutrophils and to be translocated to the cell surface during degranulation. It is not known, however, whether Mo1 is an integral membrane protein or a soluble, intragranular constituent loosely associated with the specific granule membrane. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions enriched for azurophilic granules, specific granules, plasma membrane, and cytosol, respectively. The glycoproteins in these fractions were labeled with 3H-borohydride reduction, extracted with Triton X-114, and immunoprecipitated with 60.3, an anti-Mo1 monoclonal antibody Mo1 was detected only in the specific granule and plasma membrane fractions and partitioned exclusively into the detergent-rich fraction consistent with Mo1 being an integral membrane protein. In addition, treatment of specific granule membranes with a high salt, high urea buffer to remove absorbed or peripheral proteins failed to dissociate Mo1. These data support the hypothesis that Mo1 is an integral membrane protein of plasma and specific granule membranes in human neutrophils. 相似文献
20.
Aoki SK Malinverni JC Jacoby K Thomas B Pamma R Trinh BN Remers S Webb J Braaten BA Silhavy TJ Low DA 《Molecular microbiology》2008,70(2):323-340
Contact-dependent growth inhibition (CDI) is a phenomenon by which bacterial cell growth is regulated by direct cell-to-cell contact via the CdiA/CdiB two-partner secretion system. Characterization of mutants resistant to CDI allowed us to identify BamA (YaeT) as the outer membrane receptor for CDI and AcrB as a potential downstream target. Notably, both BamA and AcrB are part of distinct multi-component machines. The Bam machine assembles outer membrane beta-barrel proteins into the outer membrane and the Acr machine exports small molecules into the extracellular milieu. We discovered that a mutation that reduces expression of BamA decreased binding of CDI+ inhibitor cells, measured by flow cytometry with fluorescently labelled bacteria. In addition, alpha-BamA antibodies, which recognized extracellular epitopes of BamA based on immunofluorescence, specifically blocked inhibitor-target cells binding and CDI. A second class of CDI-resistant mutants identified carried null mutations in the acrB gene. AcrB is an inner membrane component of a multidrug efflux pump that normally forms a cell envelope-spanning complex with the membrane fusion protein AcrA and the outer membrane protein TolC. Strikingly, the requirement for the BamA and AcrB proteins in CDI is independent of their multi-component machines, and thus their role in the CDI pathway may reflect novel, import-related functions. 相似文献