首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten snap bean (Phaseolus vulgaris) genotypes were screened for polymorphism with 400 RAPD (random amplified polymorphic DNA) primers. Polymorphic RAPDs were scored and classified into three categories based on ethidium bromide staining intensity. An average of 5.19 RAPD bands were scored per primer for the 364 primers that gave scorable amplification products. An average of 2.15 polymorphic RAPDs were detected per primer. The results show that primer screening may reduce the number of RAPD reactions required for the analysis of genetic relationships among snap-bean genotypes by over 60%. Based on the analysis of the distribution of RAPD amplification, the same number of polymorphic RAPDs were amplified from different genotypes for all RAPD band intensity levels. A comparison of RAPD band amplification frequency among genotypes for the three categories of bands classified by amplification strength revealed a measurable difference in the frequencies of RAPDs classified as faint (weakly amplifying) compared to RAPD bands classified as bold (strongly amplifying) indicating a possible scoring error due to the underscoring of faint bands. Correlation analysis showed that RAPD bands amplified by the same primer are not more closely correlated then RAPD bands amplified by different primers but are more highly correlated then expected by chance. Pairwise comparisons of RAPD bands indicate that the distribution of RAPD amplification among genotypes will be a useful criterion for establishing RAPD band identity. For the average pairwise comparison of genotypes, 50% of primers tested and 15.8% of all scored RAPDs detected polymorphism. Based on RAPD data Nei's average gene diversity at a locus was 0.158 based on all scorable RAPD bands and 0.388 if only polymorphic RAPD loci were considered. RAPD-derived 1 relationships among genotypes are reported for the ten genotypes included in this study. The data presented here demonstrate that many informative, polymorphic RAPDs can be found among snap bean cultivars. These RAPDs may be useful for the unique identification of bean varieties, the organization of bean germplasm, and applications of molecular markers to bean breeding.  相似文献   

2.
The random amplified polymorphic DNA (RAPD) technique was used to characterize three species ofPorphyra from the western North Atlantic and adjacent Gulf of Mexico. Twenty 10-mer primers were screened for DNA amplification usingPorphyra template DNA. Nine of these oligonucleotide primers, all (G+C)-rich, were positive or band-producing, but yielded poor or variable band resolution. Subsequent use of the universal 20-mer M 13 primer resulted in both clear band resolution with a minimum of secondary bands and a high degree of reproducibility. Amplification products for DNA from six regional isolates ofPorphyra carolinensis Coll et Cox,P. leucosticta Thuret in Le Jolis andP. rosengurttii Coll et Cox were compared to each other and toBangia atropurpurea (Roth) C. Agardh. Results provide evidence of both genetically hetero- and homogeneous populations. Use of the RAPD method with the M 13 primer yields amplification products which can be used to fingerprint specific genotypes. This procedure could be used to discriminate between hetero- and homokaryotic fusion products from previously characterized donor strains.  相似文献   

3.
Optimization of primer screening for evaluation of genetic relationship in 34 cultivars of rose through random amplified polymorphic DNA (RAPD) markers was investigated. Four series of decamer primers were used for screening and optimization of RAPD analysis between which A and N series performed good amplification of fragments as compared with other series. The primers OPN-07 and OPN-15 produced maximum number of DNA fragments in Rosa hybrida cv. Anuraag. Some primer either did not produce amplification or produced very poor amplification. Further, ten selected primers were used for genetic analysis of 34 rose cultivars. The primer OPN-15 amplified 21 fragments in all cultivars tested. A total of 162 distinct DNA fragments (bands) ranging from 100 to 3400 base pairs were amplified by using 10 selected random primers. The cluster analysis indicated that these rose cultivars formed nine clusters.  相似文献   

4.
RAPD band reproducibility and scoring error were evaluated for RAPDs generated by 50 RAPD primers among ten snap bean (Phaseolus vulgaris L.) genotypes. Genetic distances based on different sets of RAPD bands were compared to evaluate the impact of scoring error, reproducibility, and differences in relative amplification strength on the reproducibility of RAPD based genetic distance estimates. The measured RAPD data scoring error was 2%. Reproducibility, expressed as the percentage of RAPD bands scored that are also scored in replicate data, was 76%. The results indicate that the probability of a scored RAPD band being scored in replicate data is strongly dependent on the uniformity of amplification conditions between experiments, as well as the relative amplification strength of the RAPD band. Significant improvement in the reproducibility of scored bands and some reduction in scoring error was achieved by reducing differences in reaction conditions between replicates. Observed primer variability for the reproducibility of scored RAPDs may also facilitate the selection of primers, resulting in dramatic improvements in the reproducibility of RAPD data used in germplasm studies. Variance of genetic distances across replicates due to sampling error was found to be more than six times greater than that due to scoring error for a set of 192 RAPD bands. Genetic distance matrices computed from the RAPD bands scored in replicated data and RAPD bands that failed to be scored in replicated data were not significantly different. Differences in the ethidium bromide staining intensity of RAPD bands were not associated with significant differences in resulting genetic distance matrices. The assumption of sampling error as the only source of error was sufficient to account for the observed variation in genetic distance estimates across independent sets of RAPD bands.  相似文献   

5.
Sorghum downy mildew, caused by the obligate oomycete Peronosclerospora sorghi, has been controlled through the use of resistant cultivars and seed treatment with metalaxyl. A recent outbreak in fields planted with treated seed revealed the presence of a metalaxyl-resistant variant. Here, PCR-based methods including amplification from RAPD primers and two systems of automated AFLP analysis have been used to detect DNA-level genetic variation among 14 isolates including metalaxyl-resistant and susceptible isolates, as well as representatives of common pathotypes 1 and 3 and a new pathotype. In total, 1708 bands were detected after amplification of EcoRI/MseI fragments with 16 primer combinations. Nearly as many amplified products were observed using eight primer pairs with three-base extensions (LI-COR) as with two-base extensions (ABI-Prism genetic capillary system). Approximately 25 % of the bands were polymorphic across the 14 isolates, with the majority of differences specific to the pathotype P1 isolate. The AFLP banding patterns are consistent with metalaxyl resistance and the new pathotype having evolved from pathotype 3.  相似文献   

6.
Primer screening and optimization for random amplified polymorphic DNA (RAPD) analysis of cashew (Anacardium occidentale L.) was investigated. Among four series (A, B, D and N) of 10-mer primers, A-series performed better amplification of fragments than other series. The maximum amplification fragments was obtained using OPA-02, OPA-03, OPA-09, OPB-06, OPB-10, OPD-03, OPD-05 and OPN-03 primers. The primers OPA-02 and OPN-03 produced maximum number of DNA fragments in Anacardium occidentale cv. H-320. Primers (OPB-08 and OPN-05 performed a least number of amplification fragments. RAPD profile also indicate that some primer did not produce good amplification. The primer OPA-02 amplified 12 number of polymorphic bands in 20 cultivars of cashew. Only one DNA fragment was produced in A. occidentale cv. Vridhachalam - 2 (M-44/3) by using the primer OPA-02. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A system of randomly amplified polymorphic DNA (RAPD) markers was developed to facilitate the transfer of S. bulbocastanum (blb) genes into the S. tuberosum (tbr) genome by hybridization and backcrossing. DNA from tbr, blb and the hexaploid hybrid was used as a template for polymerase chain reaction (PCR) amplification. Polymorphic RAPD products, originating from 10-mer primers, specific for blb were cloned and sequenced at their ends to allow the synthesis of 18-mer primers. The 18-mer primers allowed a more reproducible assay than the corresponding RAPDs. Of eight 18-mer primer pairs, four amplified the expected products specific for blb. However, the stringency of the primer annealing conditions needed to be carefully optimized to avoid amplification of the homeologous tbr product, suggesting that the original RAPD polymorphisms were due to single base-pair changes rather than deletions or insertions. Two primers used for amplification of backcross 2 progeny segregated in a 11 (presence:absence) ratio; the other two were unexpectedly absent. The most likely explanation for the loss of these markers is irregular meiosis in the original hexaploid hybrid and subsequent elimination of chromosomes. Cytological analysis of the meiosis in the hybrid demonstrated widespread irregular pairing and the presence of lagging univalents. In addition, the first backcross individual used as the parent for the second backcross had 54 chromosomes instead of the predicted 60. In conclusion, our results demonstrate that PCR technology can be used for the efficient isolation of taxon-specific markers in Solanum. Furthermore, by the use of these markers we detected the loss of chromosomes that was subsequently shown by cytological analysis to be caused by irregular meiosis of the somatic hybrid.  相似文献   

8.
The inter-simple-sequence repeat (ISSR) primers that anneal to a simple repeat of various length and at non-repetitive motifs at 3 and 5 end were attempted for PCR amplification of Leptospira genome. Of the six ISSR primers tested, namely, (AG)8T, (AG)8C, (AG)8G, (CA)8A, (TG)8C and (TG)8G, only primer (AG)8T produced amplification of 1000 bp in the two non-pathogenic Leptospira species tested, viz; Leptospira biflexa serovar patoc and L. meyeri serovar ranarum, with no amplification in any of the 16 standard pathogenic serovars tested. The remaining five ISSR primers did not exhibit any amplification of the Leptospira genome in either pathogenic or non-pathogenic species. From among 35 Leptospira isolates recovered from hospitalized patients with pyrexia of unknown origin and/or febrile jaundice (12 in number) and from different environmental water sources (23 in number), (AG)8T ISSR-PCR correctly identified all the 22 isolates from water sources that were confirmed to be non-pathogenic by conventional tests. The results therefore, confirmed the ability of a primer, based on simple-sequence repeat motif, to produce a fragment that is useful as a group genetic marker in Leptospira species. The single nucleotide anchor, T, at the 3 end of the primer appeared to play an important role in differentiation of pathogenic and non-pathogenic species of Leptospira. Multiplex PCR, using ISSR primer, (AG)8T and the reported 16S rRNA gene primers, specific for pathogenic Leptospira species, or the 23S rRNA Leptospira genus specific primers, provided clear identification of serovars and isolates into pathogenic or non-pathogenic groups.  相似文献   

9.
Three interspecific crosses were developed using Cicer arietinum (ICC 4918) as the female parent and wild Cicer species [C. reticulatum - JM 2100, JM 2106 and C. echinospermum - ICCW 44] as the male parent. Cicer arietinum (ICC 4918) × C. reticulatum (JM 2100) cross produced the largest number of F2 plants and was chosen for linkage mapping using Random Amplified Polymorphic DNA (RAPD) primers. A partial linkage map was constructed based upon the segregation of 36 RAPD markers obtained by amplification using 35 primers. The linkage map consists of two linkage groups with 17 linked markers covering a total of 464.9 cM. Analyses also revealed association of three morphological traits with linked RAPD markers. Out of seven morphological traits tested for association with linked markers in the segregating plants, four Quantitative trait loci (QTL) were detected for the trait leaf length and three QTLs each for the traits leaf width and erect plant habit.  相似文献   

10.
Seventy isolates of Bacillus thuringiensis were isolated from soil samples collected from cotton fields. These isolates were characterized by randomly amplified poylmorphic DNA (RAPD) markers to determine their genetic diversity pattern based on their source of origin. Different random decamer primers were used for RAPD amplification, which generated a total of 1935 fragments; of these 1865 were polymorphic and 68 monomorphic. The primers OPA03, OPA08, OPD14, OPD19, OPD20, OPE17 and OPD19 produced 100% polymorphic fragments, whereas primers OPC06, OPC20 and OPD17 produced 20, 31 and 17 monomorphic fragments, respectively. When the RAPD banding pattern data was subjected to dendrogram construction, the 70 isolates fell into two separate clusters, cluster I and cluster II, which includes 26 and 44 B. thuringiensis isolates, respectively. These two main clusters were further divided into four subclusters at Eucledian distance of 150 and 80% similarity index. All primers showed amplification and indicated the good diversity of B. thuringiensis isolates. The RAPD pattern showed 4–10 bands per isolate, with MWt in the range of 0.4–3.5 Kb and an average of 193.5 fragments were produced per primer. The primer OPE17 was found to be the most discriminatory as it produced 286 polymorphic bands.  相似文献   

11.
Genetic diversity of indigenous Bradyrhizobium japonicum population in Croatia was studied by using different PCR-based fingerprinting methods. Characteristic DNA profiles for 20 B. japonicum field isolates and two reference strains were obtained using random primers (RAPD) and two sets of repetitive primers (REP- and ERIC-PCR). In comparison with the REP, the ERIC primer set generates fingerprints of lower complexity, but still several strain-specific bands were detected. Different B. japonicum isolates could be more efficiently distinguished by using combined results from REP- and ERIC-PCR. The most polymorphic bands were observed after amplification with four different RAPD primers. Both methods, RAPD and rep-PCR, resulted in identical grouping of the strains. Cluster analysis, irrespective of the fingerprinting method used, revealed that all the isolates could be divided into three major groups. Within the major groups, the degree of relative similarity between B. japonicum isolates was dependent upon the method used. Our results indicate that both RAPD and rep-PCR fingerprinting can effectively distinguish different B. japonicum strains. RAPD fingerprinting proved to be slightly more discriminatory than rep-PCR.  相似文献   

12.
In the present study, two polymerase chain reaction (PCR)-based methods namely, randomly amplified polymophic DNA (RAPD) and amplification fragment length polymorphism (AFLP) were employed to assess genetic variations, which may appeared, in tissue culture-derived date palm (Phoenix dactylifera) offshoots. Analysis of RAPD banding patterns generated by PCR amplification using 37 random primers gave no evidences for somaclonal variations and the percentage of polymorphic bands in a total of 259 scored bands was zero. Meanwhile, analysis of AFLP banding patterns generated using 13 primer combinations pointed to minor genetic variations in the AFLP banding patterns. The percentage of genetic variations (polymorphism) in tissue culture-derived date palm offshoots belonging to cultivars Sakkoty, Gandila and Bertamoda was 2.6, 0.79 and 1 %, respectively, as revealed by AFLP analysis. The low percentage of genetic variations confirms the genetic stability of tissue culture-derived dry date palm cultivars.  相似文献   

13.
The recently developed random amplified polymorphic DNA technique was evaluated as a method for characterizing isolates of the agarophyte Gelidium vagum Okamura. Reaction conditions for single primer polymerase chain reaction were optimized to obtain a high degree of reproducibility of the amplified bands generated from purified G. vagum DNA. A total of 165 primers, including both (A + T)- and (G + C)-rich sequences, was screened for DNA amplification using template DNA from a single Gelidium isolate. None of the 45 (A + T)-rich primers was positive (i.e. band-producing). Of the (G + C)-rich primers, 47 were positive, generating a total of 322 prominent amplification products for DNA from 13 different G. vagum isolates. Polymorphic DNA loci were detected by 37 of the primers. Unweighted pair-group arithmetic average cluster analysis (UPGMA) of these loci was used to group the G. vagum isolates and thereby determine which were most similar. G. latifolium, used as an out-group for the UPGMA analysis, showed a high degree of dissimilarity.  相似文献   

14.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

15.
Summary The identification of somatic hybrids between Solanum tuberosum and S. brevidens can be carried out using polymerase chain reaction (PCR) and arbitrary 10-mer primers to generate random amplified polymorphic DNA (RAPD) markers. Five commercial primers have been tested. Each primer directed the amplification of a genome-specific fingerprint for the fusion parents and S. brevidens. The size of the amplified DNA fragments ranged from 100 to 1800 base pairs. The somatic hybrids showed a combination of the parental banding profiles with four of the five primers surveyed, whereas regenerants from one of the parents had the same or a similar banding pattern to that of the parent. Thus RAPD markers provide a quick, simple and preliminary screening method for putative somatic hybrids.Abbreviations EDTA ethylenediaminetetraacetic acid, - PCR polymerase chain reaction - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphisms - TBE Tris-borate-EDTA buffer - Tris trizma base  相似文献   

16.
Rapid identification of white-Engelmann spruce species by RAPD markers   总被引:7,自引:0,他引:7  
Fragments of random amplified polymorphic DNA (RAPDs) were used as markers to distinguish Picea glauca (Moench) Voss (white spruce) and Picea engelmannii Parry (Engelmann spruce). These species and their putative hybrids are difficult to differentiate morphologically and are collectively known as interior spruce. Four oligodeoxynucleotide decamer primers showed species-specific amplification products between white spruce and Engelmann spruce. These fragments are highly conserved among seed lots and individual trees of each species from diverse geographic origins. The consistency and reproducibility of these species-specific amplification products were tested in more than two amplification reactions. Therefore, RAPD markers can provide genetic markers for easy and rapid identification of the specific genetic entry of these spruce species and their reported putative hybrids. According to the frequencies of the species-specific RAPD markers, it is possible to estimate the hybrid fraction, indicative of true introgression between the two species. These results are useful for quick identification of both species and their hybrid swarms at any stage in the sporophyte phase of the life cycle, for determining the occurrence and the magnitude of introgressive hybridization in an overlap zone between the two species, and for certification purposes in operational re-forestation and tree-improvement programs.  相似文献   

17.
RAPD (random amplified polymorphic DNA) markers generated by 15 arbitrary decamers were used to determine the frequency of DNA polymorphism in 39 watermelon [Citrullus lanantus (Thunb.) Mansf.] germplasms. Of the 15 primers tested, all except 1 (primer 275) directed the amplification of polymorphic products. A total of 162 amplification products were generated across all 39 genotypes. Among the 162 fragments, 35 (21%) appeared to be reliable polymorphic markers. The mean value by marker difference in this comparison was 0.24, and the highest, 0.69. Eight RAPD markers could be utilized in the unique variety discrimination 8 watermelon genotypes. From the phenograms constructed by UPGMA based on the comparison of RAPD markers, four clusters were resolved. Each group was also characterized and identified with morphological and genetic characteristics for each genotype. The free sugars of the edible parts of watermelons were analyzed by HPLC (high-performance liquid chromatography). Results from the phylogenetic analysis of band sharing data were consistent with sweetness as measured by HPLC. In conclusion, RAPD assays can be used for providing alternative markers for identifying genotypes and quantitative characteristics in watermelon.  相似文献   

18.
Thirty-seven clinical isolates of C. neoformans were recovered from AIDS patients and all were serotype A according to standard typing tests. They were further analyzed using RAPD, PCR fingerprinting, and PFGE along with 2 additional reference isolates ATCC 34871 (serotype A) and RV 45981 (serotype D). Using 2 different RAPD primers, all of the clinical isolates and the reference serotype A (ATCC 34871) gave similar RAPD patterns while serotype D (RV 45981) gave distinctive pattern. Corresponding result was also obtained upon PCR by using a primer for microsatellite (GACA)4. However, using a primer specific to minisatellite M13 + 1, all PCR fingerprinting gave similar gel patterns (M1) for 35/37 of the clinical isolates and the reference serotype A while two clinical isolates generated different patterns called M2 and M3. The reference serotype D gave distinctive pattern called M4. PFGE gave 17 different karyotypes that could be categorized into 4 groups named EKA (1–6), EKB (1–5), EKC (1– 5) and EKD (1). The reference serotype A fell into group EKA as EKA6 while the reference serotype D fell into group EKC as EKC5. Among the clinical isolates, EKA group (20/37 isolates) and type EKA1 (16/20) dominated with only one isolate each for types EKA2 to EKA5. The next most prevalent was group EKB (12/37 isolates) which dominately fell in type EKB1 (8/12) and only one isolate each for types EKB2 to EKB5. Group EKC (4/37 isolates) and group EKD (1/37) had only one isolate for each type (EKC1 to EKC 4 and EKD1). The 2 predominant karyotypes (EKA1, 16/37 and EKB1, 8/37) may represent two originally common clones of C. neoformans expose among the patients. The high discriminatory power of PFGE infers the benefit of subtyping which lead to better understanding on the epidemiology and pathogenic potential of C. neoformans subtypes. Moreover, PCR fingerprinting and RAPD infer the feasibility of detail analysis between serotypes A and D for unencapsulated C. neoformans.  相似文献   

19.
Turkey is one of the most important mulberry fruit producers in the world. In particular, in Eastern and Inner part of Turkey, mulberry fruits are processed into several products such as `Mulberry Pekmez', `Mulberry Pestil', `Mulberry Kome' etc. Therefore, mulberry fruits give higher economic returns thus have greater employment potentials in Turkey. In order to improve the yield and fruit quality through breeding, the genetic variations and relationships among 15 selected white mulberry genotypes (Morus alba L.) were evaluated using Random Amplified Polymorphic DNA (RAPD). A total of 101 DNA markers were generated by 16 random primers, with an average of 6.3 easily detectable markers per primer. Several RAPD markers showed unique patterns of mean frequency that differed among the white mulberry genotypes. The distance matrix showed that the highest genetic distance (0.902) was between EMS13 and EMS8 and the least (0.413) was between EMS12 and EMS15. According to the results, RAPD analysis can be used for the characterization and grouping of mulberry genotypes. The genetically divergent genotypes identified from this study would be of much use in the future breeding program.  相似文献   

20.
Primers with higher G+C content produced better random amplified polymorphic DNA (RAPD) profiles in Nepenthes. The occurrence of clustered G's and C's in the center of the primer seemed also to influence the banding patterns. It was also observed that for certain polymerases, the use of different buffers other than that recommended by the manufacturer provided a better amplification profile for Nepenthes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号