首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aim  The study aimed to identify areas of endemism for aphids in the Qinghai-Tibetan Plateau and the Himalayas (QTPH), and to test congruence between patterns of endemism and patterns of overall species richness identified in a previous study.
Location  The QTPH.
Methods  A distribution data base of 326 endemic aphids in the QTPH was compiled. The study area was divided into a grid of 2°× 2° operative geographical units. Parsimony analysis of endemicity (PAE) was used to identify areas of endemism, and the diversity patterns of endemic species were then mapped using GIS.
Results  We identified 326 endemic species belonging to 138 genera within Adelgidae and 14 subfamilies of Aphididae. Five areas of endemism were found using PAE analysis: the eastern Himalayas, the western Himalayas, north-western Yunnan, southern Tibet and the eastern QTPH. Maps of patterns of endemism identified four major centres for endemic aphids, namely the western Himalayas, the eastern Himalayas (or Sikkim-Assam Himalayas), north-western Hengduan Mountains and the mountains of southern Gansu Province, and three minor centres, southern Tibet, south-eastern Tibet and the eastern Qinghai Province in the north-eastern QTPH.
Main conclusions  Our study identifies major centres of aphid endemism. Furthermore, there is a noticeable congruence between patterns of endemism and patterns of species richness. The patterns of endemism were most likely influenced by the recent uplift of the QTPH.  相似文献   

2.
Aim  The diversity of the obligate cave-dwelling fauna has proved difficult to measure because of the highly localized distributions of most species. We investigated: (1) the local and regional diversity patterns of a major component of the obligate cave-dwelling fauna living in the epikarst zone, the karst layer closest to the surface; (2) variations in local and regional patterns of species richness; and (3) sampling sufficiency at multiple scales.
Location  Caves in the Dinaric Mountains of Slovenia.
Methods  We sampled continuously the abundance of 37 species of copepods dislodged from the epikarst from 35 ceiling drips in six caves for a period of one year. Copepods were collected in a specially designed net that allowed continuous collection.
Results  Based on species accumulation curves and Chao estimates of total diversity, we determined that 3–4 months of continuous sampling were sufficient to find 90% of the species in a drip, that five drips were sufficient to find 90% of the species in a cave, and that five caves were sufficient to find 90% of the species in a region.
Main conclusions  The epikarst copepod fauna is a significant part of the aquatic cave fauna, contributing about 20% at the regional level. Because of the scale of variation, much of which occurs within a cave, and because of the availability of continuous sampling devices, the epikarst component of subterranean diversity seems to be more thoroughly and accurately measured than do other components.  相似文献   

3.
胡亮 《生物多样性》2016,24(10):1105-104
喜马拉雅山地是生物地理学研究的热点地区之一。本文对喜马拉雅地区的藤本植物多样性及其与毗邻地区的联系进行了统计分析, 并对该地区与印度河-恒河平原地区藤本植物多样性的地理格局及其成因进行了研究。结果显示: (1)喜马拉雅地区总计有1,083种藤本植物, 分属72科309属; 其中木质藤本725种, 草质藤本358种; 攀援方式主要为缠绕攀援(51.3%)。(2)该区域的藤本植物组成受相邻区域植物区系的显著影响, 其1,083种藤本植物中有74.1% (802种)在东南亚地区有分布, 50.6% (548种)在南亚有分布, 48.9% (530种)在中国西南地区有分布。本区藤本植物缺乏特有性, 仅125种(11.5%)为本区所特有, 没有特有含藤属。(3)藤本植物多样性及其在植物区系中的比例均自东向西逐渐降低; 木质藤本比例和缠绕攀援藤本比例均自东向西略呈上升趋势; 大多数含藤属的藤本多样性由东往西递减, 仅极少数含藤属由东往西逐渐增加, 如野豌豆属(Vicia)和菟丝子属(Cuscuta)。(4)藤本植物多样性在喜马拉雅和印度河-恒河平原地区呈现出自东向西递减的相似格局, 由东往西方向上含藤属递减率分别为8.4属/100 km和6.3属/100 km, 但喜马拉雅地区藤本植物多样性更高。喜马拉雅和印度河-恒河平原地区均有分布的272个含藤属中有196属在中亚及伊朗高原不再有分布, 其中31.1% (61属)在喜马拉雅地区的分布显著更偏西, 仅4.1% (8属)在印度河-恒河平原的分布显著更偏西。综合分析表明, 喜马拉雅地区藤本植物的多样性及其地理格局的特点与其特殊的地理位置、气候条件和生境的梯度变化以及毗邻地区植物区系的多元化有关; 水分条件的东西向梯度变化可能是藤本植物在喜马拉雅和印度河-恒河平原地区形成相似格局的主要原因。  相似文献   

4.
横断山区蚜虫区系的组成和特点   总被引:6,自引:3,他引:6  
研究了横断山区蚜虫区系的组成和特点.横断山区共有蚜虫11科69属125种,以东洋区、特有种类占优势.蚜虫区系古北成分和东洋成分充分交融,特有种类丰富,区系组成复杂多样.对该区蚜虫的分布进行了初步分析,特有种分布不均衡,水平主要分布在滇西北的丽江和玉龙雪山地区,垂直分布在海拔3 000~3 200 m,是特有种丰富度最高的地带.此外,对跨古北和东洋区分布种类的东亚起源进行了初步探讨.  相似文献   

5.
青藏高原拥有丰富的种子植物, 但对该地区特有植物的区系特征以及多样性还鲜有报道。本文通过植物志(书)以及在线数据库, 整理了只分布于青藏高原地区的种子植物名录及其地理分布, 分析了它们的科属特征、区系成分以及多样性空间分布格局。结果表明: 青藏高原共有特有种子植物3,764种, 隶属113科519属, 多数为草本植物(76.3%); 包含100种以上的科有菊科、毛茛科、列当科等15个, 属有马先蒿属(Pedicularis)、杜鹃花属(Rhododendron)、紫堇属(Corydalis)等7个; 从属的区系成分来看, 温带成分占主导(67.5%)。青藏高原特有植物多样性格局呈现从高原东南部向西北部逐渐递减的趋势, 其中东喜马拉雅-横断山脉的物种多样性非常丰富, 而且多数物种分布在高原的中海拔地带。理解青藏高原特有物种的特征及多样性格局对探讨高原植物区系的演化历史和物种保护有重要启示。  相似文献   

6.
1.  We tested the species diversity–energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2.  We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 × 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3.  We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4.  Although the species–energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5.  However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6.  Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.  相似文献   

7.
Stipa purpurea is among constructive endemic species in alpine meadow and steppe on the Qinghai–Tibet Plateau. To reveal the genetic diversity of this species and its relationship with geographic distribution pattern, we sampled eight populations across a northward transect with an increasing aridity gradient in the hinterland of Qinghai–Tibet Plateau. Their genetic diversity was quantified using eight intersimple sequence repeat (ISSR) primers. We found that S. purpurea had relatively low genetic diversity ( H e = 0.135) but significant genetic differentiation among populations ( G st = 0.391), indicating relatively more genetic diversity retained within populations. A Mantel test revealed a significant relationship between genetic and geographic distance in the S. purpurea populations. The genetic diversity tended to decrease with increasing latitude and longitude, while no significant relationship was found between genetic diversity and altitude, suggesting the possible influences of humidity and temperature on genetic diversity of alpine plant. We propose conservation measures for this plant on the plateau.  相似文献   

8.
中国阿勒泰地区位于新疆北部, 与哈萨克斯坦、俄罗斯、蒙古国交界, 该区包含阿尔泰山及山前荒漠和绿洲, 属于全球200个生物多样性最丰富和最具代表性生态区之一的阿尔泰-萨彦岭生物热点地区。阿勒泰地区生境多样, 鸟类物种资源丰富。尽管以往曾在阿勒泰地区进行过一些鸟类调查, 但对于该地区不同景观和生境类型中鸟类物种丰富度和分布尚无详尽报道。本文通过2013-2016年在中国境内阿尔泰山及山前平原地区对不同生境类型中的鸟类进行实地调查, 并总结文献资料及观鸟爱好者的记录数据, 重新整理了阿勒泰地区鸟类名录及地理分布, 分析了鸟类的物种组成、区系成分; 通过鸟类分布位点数据, 选取气候、土地覆被类型、人类足迹指数及地形共4类环境因子作为自变量建立MaxEnt生态位模型, 通过模拟77种鸟类的适宜分布区并叠加分布图层, 获得了阿勒泰地区的鸟类物种丰富度分布格局。结果表明: 阿勒泰共记录鸟类344种, 隶属19目55科149属, 其中雀形目163种。在垂直海拔带上, 鸟类物种数分别为高山裸岩带24种, 高山草甸带35种, 山地森林草原带172种, 低山灌木带130种, 荒漠草原带84种, 平原绿洲带173种, 以及各海拔带的湿地与水域生境中水鸟92种; 在区系成分上, 以北方型鸟类为主(170种, 占49.4%), 其次为广布种(93种, 占27.0%)。阿尔泰山地的鸟类区系呈现出西伯利亚动物区系特征, 山前平原地区呈现蒙新区分布特征, 因此, 阿勒泰地区动物地理区系属于古北界欧洲-西伯利亚亚界阿尔泰-萨彦岭区阿尔泰亚区; 山前平原地区属于古北界中亚亚界蒙新区西部荒漠亚区。MaxEnt模型推测阿勒泰地区山前平原绿洲地区、山地森林草原带和低山灌木带具有较高的鸟类物种丰富度, 尤其是额尔齐斯河流域下游的绿洲带宽阔, 鸟类物种丰富, 而高山区和荒漠生境中鸟类物种相对较少。模型预测的结果与实际调查情况相符。阿勒泰地区应采用生态友好的经济发展策略, 加强对乔木和灌木的保护, 这有助于维持较高的鸟类物种多样性。此外, 降低生境破碎化不仅对该地区物种保护有重要作用, 也对维持阿尔泰-萨彦岭生物热点地区的山地鸟类多样性有重要意义。  相似文献   

9.
青藏高原和喜马拉雅地区锦鸡儿属植物的地理分布   总被引:9,自引:0,他引:9  
锦鸡儿属Caragana是一个典型的温带亚洲分布属。本属在青藏高原和喜马拉雅约有24种1变种,约占整个属的1/3。这些种类几乎全部处于演化高级阶段,且既有叶轴宿存类群,也有假掌状叶类群。反映出种的分化很活跃,在横断山地区形成本属的分布中心、分化中心。本区内绝大多数种类是特有分布。替代现象主要受气候、植被变化作用,沿横断山和喜马拉雅分布的长齿系Ser. Bracteolatae Kom.是一个典型的替代分布类群。锦鸡儿属植物生态适应性很强,可在其生长的灌丛中形成优势种。 寒化和旱化现象十分突出,它们有一系列森林种、草原种和荒漠种及相关的形态变异。用锦鸡儿属植物进行青藏高原和喜马拉雅区域内的分布区关系分析及最小生成树MST和特有性简约性分析(PAE),表明横断山地区特别是其北部是本属植物的一个地理结点。以此沿横断山向北部唐古特和西部藏东南适应性辐射。横断山和西喜马拉雅联系微弱,看不出植物长距离扩散的踪迹,大多是由于生态因子限制而产生的隔离。虽然本区不可能是锦鸡儿属的起源地,然而,通过本区与邻近地区的地理联系,可推测它们在我国适应性辐射方向是从东北向西南。结合豆科蝶形花亚科其它属化石记录及其分布区局限在温带亚洲等现象,认为锦鸡儿植物是一组特化、晚近衍生的类群,起源于北方东西伯利亚晚第三纪中新世后期至上新世。  相似文献   

10.
新疆蚜虫的物种多样性研究   总被引:5,自引:0,他引:5  
从分类阶元、寄主植物和寄生部位等角度系统研究了新疆蚜虫类昆虫的物种多样性,共发现蚜虫5科57属183种,寄主植物55科192属.无论在属级水平还是在种级水平,蚜科均有绝对优势,分别占新疆所有属数和种数的64.90%和65.60%.结果表明,新疆蚜虫的地理分布具有明显的纬度和经度梯度性,这与天山山脉在新疆的地理位置和走向是紧密相关的.另外,受植被分布和人类活动的影响,新疆蚜虫还具有明显的岛屿状分布特征.  相似文献   

11.
高黎贡山兰花的多样性   总被引:4,自引:0,他引:4  
对高黎贡山兰科植物的生物地理学和多样性进行了研究。1.兰科是高黎贡山种子植物中最大的科,包括75属265种。2.高黎贡山兰花起源于新、旧世界的热带和温带, 热带属占60%(45属),温带属占38.67%(29属),包括2个云南特有属。但是,高黎贡山兰科植物与地中海地区和中亚地区的联系十分微弱。3.高黎贡山的兰花以地生兰为主。这里,57.33%(43属)为地生兰,而附生兰和腐生兰仅分别为31属和3属。4.兰花物种的分布区式样表明高黎贡山兰花以温带兰为主 温带兰占总种数的69.43%(184种),包括东亚成分即滇西高黎贡山-东喜马拉雅分布的种和中国西南部特有种,它们是高黎贡山兰花区系的核心。5.高黎贡山兰科的特有现象在于1)具有云南二个特有属蜂腰兰Bulleyia和反唇兰Smithorchis;2)有高黎贡山特有种21个,如泸水兜兰Paphiopedilum markianum,贡山风兰Cymbidium gongshanense,贡山贝母兰Coelogyne gongshanense,热带附生兰——万带兰亚科在高黎贡山没有形成特有种;3)高黎贡山北段的特有种比南段丰富贡山有14种,腾冲仅有4种; 海拔1800~2100 m的梯度带特有种最多(13种);4)高黎贡山有云南特有种10种,其中小花槽舌兰Holcoglossum junceum是一个热带种,因为板块位移而来到了亚热带地域;5)高黎贡山的兰科植物中有19.25%(51种)是中国特有种,它们出现在高黎贡山,分布在云南其他地区和西南的一些省区。高黎贡山特有种,分布到高黎贡山的云南特有种和分布到高黎贡山的中国特有种一共为82种,占高黎贡山兰科总种数的30.91%, 兰科在高黎贡山是一个特有化程度很高的类群。  相似文献   

12.
中国西部干旱地区啮齿动物多样性分布格局   总被引:12,自引:1,他引:12  
周立志  马勇 《生物多样性》2002,10(1):T001-T003
在系统整理我国西部干旱地区啮齿动物的分布资料,获得物种分布范围的基础上,应用GIS软件,基于等面积栅格系统,研究啮齿动物的等级多样性,探讨啮齿动物物种的区域分化特征。结果表明,祁连山地和北塔山、伊犁天山、阿拉套山和阿尔泰山地,以及贺兰山地等处的啮齿动物的属数最高;塔里木盆地中心和藏北高原的属数最低。阿尔泰山南麓、伊犁天山和东祁连山地的啮齿动物科数最多;塔里木盆地中心和藏北高原的科数较少。在青藏高原的周边,寒漠与温性荒漠、荒漠与山地、高原与盆地、荒漠与草原、山地与草原等景观的交界处,多样性指数较高。蒙新荒漠区的啮齿动物的属科数比相对较高,青藏高原的属科数比值较低,但青藏高原的种属数比值相对较高,而且GF指数亦较高。  相似文献   

13.
Aim  To perform a comparative analysis of distribution and genetic diversity in three closely related water strider species ( Gerris ) in order to shed light on a putative disjunct distribution in Gerris gillettei .
Location  Canada and the western United States.
Methods  Entomological collections from Canada and the United States were surveyed for records of Gerris pingreensis , G. gillettei and Gerris incognitus in order to establish the distribution range of each species. Using samples from present populations, mitochondrial and nuclear DNA sequence variation were used to construct minimum-spanning networks. Distribution patterns and genetic diversity were then compared among species.
Results  Our results showed that G. incognitus is a genetically distinct species with an unsuspected disjunct distribution. Gerris pingreensis and G. gillettei were found to share genetic polymorphism and they displayed spatial differences only in terms of haplotype distribution, suggesting that they form a single species.
Main conclusions  Distributional and molecular information uncover unusual distribution patterns and underline taxonomic uncertainty in a group of three closely related Gerris species. Vicariance and failure to recolonize following the last glaciation could explain the G. incognitus disjunction. Morphological and DNA-based species identifications suggest different post-glacial recolonization processes for G.   pingreensis and G. gillettei . The putative discontinuous range of G. gillettei may be explained as disjunct phenotypes of a single species.  相似文献   

14.
The fauna of dynamic riverine landscapes   总被引:13,自引:2,他引:13  
1.  Riverine landscapes are heterogeneous in space (complex mosaic of habitat types) and time (expansion and contraction cycles, landscape legacies). They are inhabited by a diverse and abundant fauna of aquatic, terrestrial and amphibious species.
2.  Faunal distribution patterns are determined by interactive processes that reflect the landscape mosaic and complex environmental gradients. The life cycles of many riverine species rely upon a shifting landscape mosaic and other species have become adapted to exploit the characteristically high turn-over of habitats.
3.  The complex landscape structure provides a diversity of habitats that sustains various successional stages of faunal assemblages. A dynamic riverine landscape sustains biodiversity by providing a variety of refugia and through ecological feedbacks from the organisms themselves (ecosystem engineering).
4.  The migration of many species, aquatic and terrestrial, is tightly coupled with the temporal and spatial dynamics of the shifting landscape mosaic. Alternation of landscape use by terrestrial and aquatic fauna corresponds to the rise and fall of the flood. Complex ecological processes inherent to intact riverine landscapes are reflected in their biodiversity, with important implications for the restoration and management of river corridors.  相似文献   

15.
安徽大别台区虫生真菌区系的物种多样性研究   总被引:7,自引:0,他引:7  
对安徽大别山区虫生真菌区系的物种多样性进行了研究。结果表明该地区虫生真菌资源十分丰富 ,共有虫生真菌 5 0种 ,隶属于 4目 4科 16属。科从大到小依次为麦角菌科 (Clavicipitaceae) (2 7种 ,占 5 4 % )、丝孢科 (Hy phomycetaceae) (15种 ,占 30 % )、虫霉科 (Entomophthoraceae) (5种 ,占 10 % )、束梗孢科 (Stilbellaceae) (3种 ,占 6 % )。含 3个种以上的优势属依次为虫草属 (Cordyceps) (2 6种 ,占 5 2 % )、拟青霉属 (Paecilomyces) (6种 ,占 12 % )、白僵菌属 (Beauveria) (3种 ,占 6 % ) ,共计 35种 ,占总种数的 70 % ;含 2个种的属为刺束梗孢属 (Akanthomyces)和虫瘟霉属 (Zoophthora) ;其余 11个属皆为单种属。优势种依次为粉拟青霉 (Paecilomycesfarinosus)、细脚拟青霉 (P .tenuipes)、下垂虫草 (Cordycepsnutans)、球孢白僵菌 (Beauveriabassiana)、金龟子绿僵菌小孢变种 (Metarhiziumanisopliaevar.anisopliae)。区系地理成分划分为 7大类型 :世界分布种 (42 .11% )、欧亚大陆分布种 (10 .5 3% )、亚热带—热带分布种 (5 .2 6 % )、东亚分布种 (7.89% )、东亚—新几内亚分布种 (5 .2 6 % )、中国—日本分布种 (5 .2 6 % )和特有成分 (2 3.6 8% ) ,表现出明显的东亚区系特征 ,而且本区及  相似文献   

16.
1) The Compositae in Tibet so far known comprise 508 species and 88 genera, which nearly amounts to one fourth of the total number of genera and one third of the total number of species of Compositae in all China, if the number of 2290 species and 220 genera have respectively been counted in all China. In Tibet there are all tribes of Compositae known in China, and surprisingly, the large tribes in Tibetan Compositae are also large ones in all China and the small tribes in Tibet are also small ones in all China. Generally speaking, the large genera in Tibet are also large ones in all China and the small genera in Tibet are likewise small ones in all China. In this sense it is reasonable to say that the Compositae flora of Tibet is an epitome of the Compositae flora of all China. In the Compositae flora of Tibet, there are only 5 large genera each containing 30 species or more. They are Aster, Artemisia, Senecio, Saussurea and Cremanthodium. And 5 genera each containing 10—29 species. They are Erigeron, Anaphalis, Leontopodium, Ajania, Ligularia and Taraxacum. In addition, there are 77 small genera, namely 87% of the total of Compositae genera in Tibet, each comprising 1—9 species, such as Aja-niopsis, Cavea and Vernonia, etc. 2) The constituents of Compositae flora in Tibet is very closely related to those of Sichuan-Yunnan provinces with 59 genera and 250 species in common. Such a situation is evidently brought about by the geographycal proximity in which the Hengtuang Shan Range links southeastern and eastern Tibet with northern and northwestern SichuanYnnnan. With India the Tibetan Compositae have 59 genera and 132 species in common, also showing close floristic relationships between the two regions. Apparently the floristic exchange of Compositae between Tibet and India is realized by way of the mountain range of the Himalayas. The mountain range of the Himalayas, including the parallel ranges, plays a important role as a bridge hereby some members of the Compositae of western or northern Central Asia and of the northern Africa or of western Asia have migrated eastwards or southeastwards as far as the southern part of Fibet and northern part of India, or hereby some Compositae plants of eastern and southeastern Asia or Asia Media have migrated northwestwards as the northern part of Central Asia. Some of the species and genera in common to both Tibet and Sinjiang indicate that this weak floristical relationship between these regions is principally realized through two migration routes: one migration route is by way of the Himalayas including the parallel ranges to Pamir Plataeu and Tien Shan, or vice versa. The other migration route is by way of northern Sinjiang to Mongolia, eastern Inner Mongolia, southwards to Gansu, Qinghai (or western Sichuan), eastern Tibet up to the Himalayas, or vice versa. However, Tibet is not entirely situated at a migration crossroad of the floral elements. An ample amount of the data shows that Compositae flora have a particular capability of development in Tibet. of the total number of species of Tibetan Compositae, 102 species and 1 genus (Ajaniopsis Shih) are endemic. Besides, 8 genera are regional endemics with their range extending to its neighbourhood. The higher percentage of endemics at specific level than at generic in Tibetan Compositae may be a result of active speciation in response to the new enviromental conditions created by the uplifting of the Himalayas. The flora in Tibetan Plateau as a whole appears to be of a younger age. 3) The uprising of the Himalayas and of the Tibetan Plateau accompanied by the ultraviolet ray radiation, the microthermal climate and the high wind pressure has, no doubt, played a profound influence upon the speciation of the native elements of Tibetan Compositae. The recent speciation is the main trend in the development of the Com-positae flora native in Tibet in the wake of upheaval of the plateau.  相似文献   

17.
1  Distribution data were assembled for non-volant small mammals along elevational gradients on mountain ranges in the western U.S.A. Elevational distributions in the species-rich Uinta Mountains were compared to those on smaller mountain ranges with varying degrees of historical isolation from the Uintas.
2  For mountain ranges supporting the richest faunas, species richness is highest over a broad low- to mid-elevation zone and declines at both lower and higher elevations. Patterns on other mountain ranges are similar but reflect lower overall species richness.
3  A basic relationship between elevational and geographical distribution is apparent in the occurrence patterns of mammals on regional mountains. Faunas on mountains that have had low levels of historical isolation appear to be influenced by immigration rather than extinction. Species restricted to high elevations in the Uintas are poorly represented on historically isolated mountains and form a portion of local faunas shaped by extinction. Species occurring at lower elevations in the Uintas have better representation on isolated mountains and apparently maintain populations through immigration.
4  Several widespread species show substantial variation in maximum elevation records on different mountain ranges. This involves (1) an upward shift in habitat zones on small, isolated mountain ranges, allowing greater access by low-elevation species, and (2) expansion of certain low- and mid-elevation species into habitats normally occupied by absent high-elevation taxa.
5  Results indicate that montane mammal faunas of the intermountain region have been shaped by broad-scale historical processes, unique regional geography and local ecological dynamics. Parallel examples among mammals of the Philippine Islands suggest that such patterns may characterize many insular faunas.  相似文献   

18.
青藏高原跳甲亚科昆虫区系研究   总被引:3,自引:0,他引:3  
讨论青藏高原(包括横断山区)的跳甲亚科昆虫区系。该区已知47属228种。1)据属级阶元的分布类型分析,以东洋属和南型属种显占优势,是区系主体,显示该区跳甲区系的热带渊源,其中高山属种赋予该区以高山区系特征;2)该区物种分化活跃,是某些多种属中国种类的分布中心和分化中心;3)联系中国跳甲亚科区系,在地理分布格局上显示西-东分布,如Hespera属的分布和西南-东北分布或西南-东北的间断分布格局,如Pentamesa和Stenoluperus属的分布。这种地理分布格局反映青藏高原的隆起给中国昆虫区系带来重要影响。  相似文献   

19.
罗霄山脉是赣江和修水流域与湘江流域的分水岭, 是中国生物多样性保护的关键地区之一。然而, 罗霄山脉地区的鱼类缺乏系统性的研究, 其鱼类物种组成、分布以及受威胁因素尚不清楚。为此, 我们于2014-2018年对罗霄山脉地区11条河流的鱼类进行了系统的调查。结果表明, 该地区共有鱼类5目17科64属113种, 山脉东坡鱼类108种, 高于西坡的72种。从生态类型看, 罗霄山脉鱼类以肉食性、底栖性、定居性类群为主。区系组成上以东亚江河平原类群为主。从物种多样性看, 遂川江、袁水、蜀水和修河的鱼类物种多样性较高, 锦江和富水的鱼类物种多样性较低; β多样性指数揭示遂川江与锦江、禾水、富水间鱼类物种出现一定的分化现象。  相似文献   

20.
The Palaearctic flea fauna includes 921 species and 479 subspecies from 96 genera of 10 families. Of them, 858 species (94%) from 43 genera are endemic to the Palaearctic; they comprise 40% of the Palaearctic Hystrichopsyllidae, 24% of Ceratophyllidae, and 20% of Leptopsyllidae. Ranges of 581 species (63% of the Palaearctic fauna) are situated within one province or subregion of the Palaearctic. Species with ranges including a part of Asia (592) comprise 87% of the total fauna; 72% of the species (517) are endemic to the Palaearctic. The largest centers of taxonomic diversity of Palaearctic fleas are situated in the East Asian, Central Asian, and Turano-Iranian Subregions: 320 species of fleas (214 of them endemic) from 59 genera (8 endemic) are known from the East Asian Subregion; 270 species (over 120 endemic) from 54 genera (5 endemic) are distributed in the Central Asian Subregion. The Turano-Iranian fauna comprises 213 species (103 endemic) from 47 genera (3 endemic); about 160 species occur in the Turanian Subprovince closest to the Russian borders, one-third of them (52 species, or 33%) are endemic; 69 species more are endemic to the entire Asian part of the Palaearctic. Extra-Asian and extra-Siberian ranges are known in 190 flea species. In the western Palaearctic, 76 species are endemic to the European Province, and 57 species, to the Mediterranean Province; 36 species have Euro-Mediterranean distribution. The fauna of the Saharo-Arabian Subregion comprises 30 species (12 endemic), 6 species have ranges of the Mediterranean-Saharo-Arabian type. Scenarios of the origin of the Siphonaptera at the Triassic-Jurassic boundary are hypothesized. Formation of the Palaearctic flea fauna was mostly supported by the Asian-Indo-Malayan and East Asian-Western American palaeofaunal centers of taxonomic diversity. The long history of faunal exchange between the east Palaearctic and the west Nearctic is manifested by the distribution of the parasites of rodents and insectivores, fleas of the genera Stenoponia, Rhadinopsylla, Nearctopsylla, and Catallagia, belonging to several subfamilies of the Hystrichopsyllidae, as well as members of a number of other flea families. A great number of endemic species in the genera Palaeopsylla and Ctenophthalmus (Hystrichopsyllidae), both in the European and Asian parts of the Palaearctic, can be explained by the junction of the European and Asian continental platforms in the late Cretaceous and their subsequent isolation during the Paleocene. A considerable contribution to the flea fauna in the Russian territory was made by the East Asian-Nearctic center of taxonomic diversity, with a smaller role of the European palaeofauna. Immigration of species of the family Pulicidae from the Afrotropical Region is restricted to the southern territories of Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号