首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of iron deficiency and iron overloading on the mitochondrial enzymes involved in heme synthesis were studied in rat livers. The in vitro activities of several of the enzymes in this pathway were differentially influenced by the in vivo iron status of the animals. delta-Aminolevulinic acid synthase was slightly increased in iron-overloaded animals, but remained normal in iron-deficient animals (0.58 +/- 0.09, 0.91 +/- 0.19 and 0.61 +/- 0.12 nmol delta-aminolevulinic acid/mg per h). Copro- and protoporphyrinogen oxidase activities were increased (20 and 60% above controls) in iron-deficient animals. In contrast, coproporphyrinogen oxidase was decreased by 20%, while protoporphyrinogen oxidase remained unchanged in iron-overloaded rats. These variations of activities were not due to changes in the affinity of these enzymes toward their substrates, as coporphyrinogen had the same Km in each case (0.62 +/- 0.05 M) as did protoporphyrinogen (0.22 +/- 0.035 M). Thus, the Km did not vary with the treatment received by the animals. Ferrochelatase activity was measured by both the pyridine hemochromogen method and by measurement of zinc protoporphyrin with endogenous zinc as substrate. In all cases, ferrochelatase was found to be able to synthesize zinc protoporphyrin with endogenous zinc as substrate. However, the apparent Km of zinc chelatase for protoporphyrin was significantly different in the three groups of animals with Km,appProto, app = 2.4 +/- 0.1 10(-7), 4 +/- 0.3 10(-7) and 9.10 +/- 0.05 10(-7) M in iron-overloaded, control and iron-deficient animals, respectively. When ferrochelatase activity was measured by pyridine hemochromogen, identical results were observed in iron-deficient and control animals but decreased by 45% in iron-overloaded animals. The mitochondrial heme content was also decreased by 40% in iron-overloaded rats but unchanged in either iron-deficient or control rats.  相似文献   

2.
Cultures of Rhizobium japonicum were grown with vigorous aeration to stationary phase and were then incubated under restricted aeration for several days. Under these "microaerobic" conditions, cellular heme content increased 10-fold, and visible amounts of porphyrins were released into the culture medium. The two predominant porphyrins produced were identified, on the basis of their spectrophotometric and chromatographic properties, as protoporphyrin and coproporphyrin. The cytochrome complement of microaerobic cells partially resembled that of the symbiotic bacteria in that cytochromes alpha-alpha3 were absent and a CO-binding cytochrome 552 was present. During the period of restricted aeration, at the time that the heme content was increasing, there was a similar 10-fold increase in the activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase. However, during the same period, the activity of succinyl thiokinase (an enzyme that is required in large amounts whether or not heme is being produced) increased only twofold. These results suggest that reduced oxygen tension may play a role in inducing heme synthesis necessary for leghemoglobin formation and bacterial differentiation in soybean root nodules.  相似文献   

3.
Relationships between activities of delta-aminolevulinate synthase and heme oxygenase, respectively the rate-limiting enzymes of heme biosynthesis and degradation, have been studied in chick embryo liver cell cultures following exposure of the cultures to glutethimide and iron, a combination known to produce a synergistic induction of both enzymes. In time-course experiments, synergistic induction of heme oxygenase activity by glutethimide and iron preceded that of delta-aminolevulinate synthase by 4 h. Effects of selective inhibitors of both heme synthesis and degradation have also been studied with respect to effects on delta-aminolevulinate synthase and heme oxygenase activities. The synergistic induction of heme oxygenase by glutethimide and iron appears to be dependent upon cellular heme synthesis because addition of inhibitors of heme biosynthesis, 4,6-dioxoheptanoic acid or N-methyl-mesoporphyrin abolishes this synergistic induction. Exposure of cultures to tin-mesoporphyrin, a potent inhibitor of heme oxygenase, prevented the synergistic induction of delta-aminolevulinate synthase produced by glutethimide and iron, or, when added after induction was already established, promptly halted any further induction. These results suggest that the level of activity of heme oxygenase can reciprocally modulate intracellular heme levels and thus activity of delta-aminolevulinate synthase.  相似文献   

4.
Heme formation in the erythron is subject to end product regulation by negative feedback, but the exact point of metabolic control in human erythroid cells is unknown. To investigate the mode of action of heme on its own formation, the effects of micromolar concentrations of hemin on de novo synthesis of protoporphyrin IX and delta-aminolevulinate (delta-ALA) by intact human reticulocytes were examined in the presence of 1 mM alpha,alpha'-bipyridyl and 200 microM 4,6-dioxoheptanoate to block their further conversion by ferrochelatase or delta-ALA dehydrase, respectively. At final concentrations (25-40 microM), hemin, which is known to reduce incorporation of [2-14C]glycine into cellular heme, significantly inhibited formation of protoporphyrin IX and total delta-aminolevulinate in situ by these cells. Since synthesis of the first committed precursor, delta-aminolevulinate, as well as protoporphyrin (which is derived from it) were diminished, the effects of hemin on delta-aminolevulinate synthase (EC 2.3.1.37) were studied. Hemin, at concentrations up to 40 microM, had no direct effect on enzymatic activity, as measured with [5-14C] alpha-ketoglutarate (in hypotonically lysed cells) or [1,4-14C]succinyl coenzyme A (in deoxycholate lysates), even after preincubation. However, when intact human reticulocytes were incubated with hemin before assay for delta-ALA synthase, there was a rapid, concentration-dependent reduction in enzymatic activity (mean 42 and 23% inhibition after 60 min for these two substrates, respectively). Hemin had no effect on steady-state levels of delta-ALA synthase mRNA, as determined by Northern blot hybridization using an erythroid-specific human cDNA probe. Thus, a mechanism for inducing feedback inhibition of the tetrapyrrole pathway exists in human erythroid cells. It controls formation of the first committed precursor of protoporphyrin IX, delta-aminolevulinate, and hence regulates heme biosynthesis by limiting the availability of the porphyrin, rather than the metal substrate for the ferrochelatase reaction. Hemin interacts with constituents of the intact reticulocyte significantly to reduce delta-aminolevulinic acid synthase activity by an indirect cellular process that does not influence the abundance of erythroid-specific synthase mRNA but may either inhibit its ribosomal translation in an unknown manner or promote degradation of the enzyme itself by specific proteolysis.  相似文献   

5.
The in vivo effect of the known herbicide, paraquat, on both hepatic oxidative stress and heme metabolism was studied. A marked increase in lipid peroxidation and a decrease in reduced glutathione (GSH) content were observed 1 h after paraquat administration. The activity of liver antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase was decreased 3 h after paraquat injection. Heme oxygenase-1 induction started 9 h after treatment, peaking at 15 h. delta-aminolevulinic acid synthase induction occurred once heme oxygenase had been enhanced, reaching its maximum (1.5-fold of control) at 16 h. delta-aminolevulinic acid dehydratase activity was 40% inhibited at 3 h showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of alpha-tocopherol (35 mmol/kg body weight) 2 h before paraquat treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels as well as heme oxygenase-1 and delta-aminolevulinic acid synthase induction. This study shows that oxidative stress produced by paraquat leads to an increase in delta-aminolevulinic acid synthase and heme oxygenase-1 activities, indicating that the herbicide affects both heme biosynthesis and degradation.  相似文献   

6.
The effects of iron deficiency and iron resupply on the metabolism of leaf organic acids have been investigated in hydroponically grown sugar beet. Organic acid concentrations and activities in leaf extracts of several enzymes related to organic acid metabolism were measured. Enzymes assayed included phosphoenol pyruvate carboxylase (PEPC; EC 4.1.1.31), different Krebs cycle enzymes: malate dehydrogenase (MDH; EC 1.1.1.37), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2), citrate synthase (CS; EC 4.1.3.7) and isocitrate dehydrogenase (ICDH; EC 1.1.1.42), glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and two enzymes related to anaerobic metabolism (lactate dehydrogenase [LDH]; EC 1.1.1.27, and pyruvate decarboxylase [PDC]; EC 4.1.1.1). Iron concentration in leaves was severely decreased by iron deficiency. Iron resupply caused an increase in iron concentrations, reaching levels similar to the controls in 96 h. Iron deficiency induced a 2.3-fold (from 16 to 37 mmol m−2) increase in leaf total organic acid concentration. Organic anion concentrations were still 4-fold higher than the controls 24 h after resupply and decreased to values similar to those found in the controls after 96 h. All measured enzymes had increased activities in extracts of iron-deficient leaves when compared to the controls and generally decreased to control values 24 h after iron addition. These data provide evidence that organic acid accumulation in iron-deficient leaves is likely not due to an enhancement in leaf carbon fixation. Instead, this accumulation could be associated with organic acid export from the roots to the leaves via xylem.  相似文献   

7.
Isolated hepatocytes from rats with experimental diabetes exhibit increased content of cytochrome P-450 and cyclic AMP and normal activities of the regulatory enzymes delta-aminolevulinic acid synthase and ferrochelatase. The inducing effect exerted by phenobarbital on cytochrome P-450, delta-aminolevulinic acid synthase and ferrochelatase biosynthesis and cyclic AMP content in diabetic hepatic cells is markedly greater than that observed in normal hepatocytes. This stimulatory response is neither enhanced by added dibutyryl cyclic AMP nor repressed by glucose. The present results suggest that the heme pathway of diabetic hepatocytes is more susceptible to porphyrinogenic factors.  相似文献   

8.
Acquisition of iron from transferrin regulates reticulocyte heme synthesis   总被引:6,自引:0,他引:6  
Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59Fe from [59Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [59Fe]transferrin. Also, Fe-SIH stimulates [2-14C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59Fe incorporation into heme from either [59Fe]transferrin or [59Fe]SIH but does reverse the inhibition of 59Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.  相似文献   

9.
Altered hepatic microsomal drug metabolism has been reported to occur in afflicted with hyperbilirubinemia. Similarities of the chemical structures of hydroxymethylbilane, an intermediate in the biosynthesis of uroporphyrinogen, to bilirubin prompted investigations of the effect of bilirubin on the activity of uroporphyrinogen I synthase (porphobilinogen deaminase, EC 4.3.1.8) and the biosynthesis of heme. Bilirubin was found to be a reversible, noncompetitive inhibitor of uroporphyrinogen I synthase. The inhibition constant (Ki) for bilirubin was 1.5 microM. Bile acids had no effect on rat hepatic uroporphyrinogen I synthase activity. Hyperbilirubinemia was achieved in rats by biliary ligation in order to investigate whether elevated levels of bilirubin impair the biosynthesis of hepatic heme in vivo. The relative rate of heme biosynthesis, as measured by the rate of incorporation of delta-[4-14C]aminolevulinic acid into heme, was decreased 59% 24 h after biliary obstruction. The levels of hepatic microsomal heme and cytochrome P-450 were decreased by 43 and 40%, respectively, 72 h after biliary obstruction. The activities of hepatic delta-aminolevulinic acid synthase and uroporphyrinogen I synthase were increased by 39 and 46%, respectively, 72 h after biliary obstruction. During the 48- to 72-h period following biliary obstruction, the urinary excretion of porphobilinogen and uroporphyrin was increased 3.0- and 3.5-fold, respectively, whereas, the urinary excretion of delta-aminolevulinic acid was not altered. During this 48-to 72-h time interval following biliary obstruction, 100% of the uroporphyrin was excreted as isomer I. These results indicate that bilirubin is capable of depressing the biosynthesis of rat hepatic heme and thus cytochrome P-450-mediated drug metabolism by inhibition of the formation of uroporphyrinogen. These findings are a plausible mechanism for reports of impaired clearance of various drugs in patients afflicted with hyperbilirubinemic disease states.  相似文献   

10.
11.
Application of delta-aminolevulinic acid (ALA) results in the endogenous accumulation of protoporphyrin IX and is a useful approach in the photodynamic therapy (PDT) of cancers. To investigate the role of nitric oxide (NO) in the specific accumulation of protoporphyrin and ALA-induced PDT of cancerous cells, we transfected inducible-nitric oxide synthase (NOS2) cDNA into human embryonic kidney (HEK) 293T cells and examined the ALA-induced photo-damage as well as the accumulation of porphyrin in the cells. When the NOS2-expressing HEK293T cells were treated with ALA and then exposed to visible light, they became more sensitive to the light with accumulating porphyrins, as compared with the ALA-treated control cells. An increase in the generation of NO in transfected cells led to the accumulation of protoporphyrin with a concomitant decrease of ferrochelatase, the final step enzyme of heme biosynthesis. When mouse macrophage-like RAW264.7 cells were cultured with lipopolysaccharide and interferon-gamma, the expression of NOS2 was induced. The addition of ALA to these cells led to the accumulation of protoporphyrin and cell death upon exposure to light. The treatment of cells with an NOS inhibitor, NG-monomethyl-L-arginine acetate, resulted in the inhibition of protoporphyrin accumulation and cell death. The levels of mitochondrial ferrochelatase and rotenone-sensitive NADH dehydrogenase in the NOS2-induced cells decreased. These results indicated that the generation of NO augments the ALA-induced accumulation of protoporphyrin IX and subsequent photo-damage in cancerous cells by decreasing the levels of mitochondrial iron-containing enzymes. Based on the fact that the production of NO in cancerous cells is elevated, NO in the cells is responsible for susceptibility with ALA-induced PDT.  相似文献   

12.
Regulation of delta-aminolevulinic acid (ALA) synthase and heme oxygenase was analyzed in primary rat hepatocytes and in two immortalized cell lines, CWSV16 and CWSV17 cells. ALA synthase was induced by 4,6-dioxohepatnoic acid (4,6-DHA), a specific inhibitor of ALA dehydratase, in all three systems; however, the induction in CWSV17 cells was greater than in either of the other two systems. Therefore, CWSV17 cells were used to explore the regulation of both enzymes by heme and 4,6-DHA. Data obtained from detailed concentration curves demonstrated that 4,6-DHA induced the activity of ALA synthase once ALA dehydratase activity became rate-limiting for heme biosynthesis. Heme induced heme oxygenase activity with increases occurring at concentrations of 10 microM or greater. Heme blocked the 4,6-DHA-dependent induction of ALA synthase with an EC50 of 1.25 microM. Heme-dependent decreases of ALA synthase mRNA levels occurred more quickly and at lower concentrations than heme-dependent increases of heme oxygenase mRNA levels. ALA synthase mRNA remained at reduced levels for extended periods of time, while the increases in heme oxygenase mRNA were much more transient. The drastic differences in concentrations and times at which heme-dependent effects were observed strongly suggest that two-different heme-dependent mechanisms control the ALA synthase and heme oxygenase mRNAs. In CWSV17 cells, heme decreased the stability of ALA synthase mRNA from 2.5 to 1.3 h, while 4,6-DHA increased the stability of the mRNA to 5.2 h. These studies demonstrate that regulation of ALA synthase mRNA levels by heme in a mammalian system is mediated by a change in ALA synthase mRNA stability. The results reported here demonstrate the function of the regulatory heme pool on both ALA synthase and heme oxygenase in a mammalian hepatocyte system.  相似文献   

13.
W Wang  J E Boynton  N W Gillham 《Cell》1975,6(1):75-84
A Mendelian mutation, r-1, in Chlamydomonas reinhardtii has been isolated which elevates protoporphyrin accumulation of the Mendelian protoporphyrin mutants brS-1 and brC-1 more than 20 fold. This increased protoporphyrin accumulation is shown to result from increased delta-aminolevulinic acid synthesis in the double mutants brS-1 r-1 and brC-1 r-1 over that of brS-1 and brC-1 alone. By itself, the r-1 mutation has no detectable protoporphyrin accumulation and has reduced levels of delta-aminolevulinic acid synthesizing activity, chlorophyll, protoheme, and cytochrome oxidase activity. The low levels of chlorophyll and protoheme in r-1 can be increased by feeding delta-aminolevulinic acid. We hypothesize that r-1 may be a mutation of the gene coding for the delta-aminolevulinic acid synthesizing enzyme which reduces the sensitivity of this enzyme to feedback inhibition by protoporphyrin or heme as well as reducing the overall activity of the enzyme. Evidence is also presented for a single delta-aminolevulinic acid synthesizing enzyme serving both chlorophyll and heme biosynthesis.  相似文献   

14.
15.
Protoporphyrin formation in Rhizobium japonicum.   总被引:7,自引:6,他引:1       下载免费PDF全文
The obligately aerobic soybean root nodule bacterium Rhizobium japonicum produces large amounts of heme (iron protoporphyrin) only under low oxygen tensions, such as exist in the symbiotic root nodule. Aerobically incubated suspensions of both laboratory-cultured and symbiotic bacteria (bacteroids) metabolize delta-aminolevulinic acid to uroporphyrin, coproporphyrin, and protoporphyrin. Under anaerobic conditions, suspensions of laboratory-cultured bacteria form greatly reduced amounts of protoporphyrin from delta-aminolevulinic acid, whereas protoporphyrin formation by bacteroid suspensions is unaffected by anaerobiosis, suggesting that bacteroids form protoporphyrin under anaerobic conditions more readily than do free-living bacteria. Oxygen is the major terminal electron acceptor for coproporphyrinogen oxidation in cell-free extracts of both bacteroids and free-living bacteria. In the absence of oxygen, ATP, NADP, Mg2+, and L-methionine are required for protoporphyrin formation in vitro. In the presence of these supplements, coproporphyrinogenase activity under anaerobic conditions is 5 to 10% of that observed under aerobic conditions. Two mechanisms for coproporphyrinogen oxidation exist in R. japonicum: an oxygen-dependent process and an anaerobic oxidation in which electrons are transferred to NADP. The significance of these findings with regard to heme biosynthesis in the microaerophilic soybean root nodule is discussed.  相似文献   

16.
This study examined the possibility that generation of heme within mitochondria may provide a local concentration sufficient to inhibit the activity of delta-aminolevulinic acid (ALA) synthase, the enzyme that catalyzes the rate-limiting step in hepatic heme biosynthesis. This was accomplished by simultaneously running ALA synthase and heme synthase activities in intact mitochondria isolated from rat liver. Radiochemical assays were used to measure the enzyme activities. ALA synthase activity did not decrease as the rate of heme formation was increased by varying the concentration of substrates for heme synthase. Even at a rate of heme generation estimated to be at least 75 times the rate occuring in vivo, ALA synthase activity was unchanged. We conclude that end product inhibition of ALA synthase activity by heme is not an important physiological mechanism for regulation of hepatic heme biosynthesis.  相似文献   

17.
Primary chick embryo liver cells, which had been previously cultured in Eagle's medium containing 10% fetal bovine serum, had the same characteristics (inducibility of delta-aminolevulinic acid synthetase and synthesis of plasma proteins) when cultured in a completely defined Ham F-12 medium containing insulin. Insulin was active in the physiological range; 2 to 3 nM were sufficient to increase the induced delta-aminolevulinic acid synthetase to 50% of the maximum effect obtained with a saturating amount of insulin (30 nM). Serum albumin added to the Ham-insulin medium caused protoporphyrin but not uroporphyrin, generated in the cultured liver cells, to be transferred to the medium. As little as 10 mug of human serum albumin per ml caused the transfer of one-half of the protoporphyrin. Bovine serum albumin was only about 1/30 as effective. A spectrofluorometric method and calculation procedure are described for quantitation, in the nanomolar range, of total porphyrin and the percentage of this that is protoporphyrin or uroporphyrin plus coproporphyrin. The method is satisfactory for the measurement of porphyrins generated by 1 mg wet weight of cells in culture in 20 hours. Heme (0.1 to 0.3 muM), when added to the medium as hemin, human hemoglobin, or chicken hemoglobin, specifically inhibited the induction of delta-aminolevulinic acid synthetase by one-half. This high sensitivity for heme was observed under conditions in which the defined medium was free of serum and where a chelator of iron was added to the medium to diminish the synthesis of endogenous heme. Heme endogenously generated from exogenous delta-aminolevulinic acid also inhibited the induction; chelators of iron prevented this inhibition. The migration of heme from the mitochondria to other portions of the cell is discussed in terms of the affinities of different proteins for heme. A hypothesis of a steady state of liver heme metabolism, controlled by the concentration of "free" heme, is presented. The different effects of heme on the synthesis of a number of proteins are summarized.  相似文献   

18.
In many types of cells the synthesis of delta-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from our laboratory with reticulocytes suggest that the rate of iron uptake from transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels of Fe-Tf (20 microM). Furthermore, in induced Friend cells 100 microM Fe-SIH stimulated 2-14C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. In contrast, Fe-SIH, even when added in high concentrations, did not stimulate heme synthesis in uninduced Friend cells but was able to do so as early as 24 to 48 h following induction. In addition, contrary to previous results with rabbit reticulocytes, Fe-SIH also stimulated globin synthesis in induced Friend cells above the level seen with saturating concentrations of transferrin. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells.  相似文献   

19.
Porphyrin synthesis and iron accumulation was stimulated by exogenous 5-aminolevulinic acid (ALA) in uninduced Friend erythroleukemic cells (FELC). Uroporphyrin and protoporphyrin were the major intermediated precursors produced. All porphyrin types were conjugated to protein insoluble cellular components and could be extracted only by methanol sulfuric acid esterification. Heme content of the uninduced FELC was increased 6-fold in the presence of 5 x 10(-4) M ALA. As a consequence, the synthesis of the minor murine hemoglobin component was preferentially induced, an effect similar to that expressed by exogenous hemin. Addition of exogenous ALA to 0.5% DMSO-induced cells increased total hemoglobin synthesis with a higher efficiency of the minor hemoglobin. The endogenous synthesis of porphyrin from exogenous ALA was markedly reduced by hemin. Uroporphyrin, coproporphyrin, protoporphyrin and heme were equally repressed, indicating an inhibitory effect of hemin on ALA dehydrase and urosynthetase activities. In addition, hemin repressed [3H]leucine incorporation into protein by uninduced cells. Incubation of uninduced cells in culture medium without serum in the presence of hemin blocked their protein synthesis activity, whereas addition of serum exerted a protective effect on living FELC.  相似文献   

20.
Effects of modulators of protein phosphorylation on delta-aminolevulinic acid (ALA) synthase and heme oxygenase-1 mRNA were analyzed in the human hepatic cell lines Huh-7 and HepG2 using a quantitative RNase protection assay. Okadaic acid was found to induce ALA synthase mRNA in a concentration-dependent fashion in both Huh-7 and HepG2 cells. The EC(50) for induction of ALA synthase mRNA in Huh-7 cells was 13.5 nM, with maximum increases occurring at okadaic acid concentrations of 25-50 nM. The EC(50) for induction of ALA synthase mRNA in HepG2 cells was 35.5 nM, with maximum increases occurring at okadaic acid concentrations of 50 nM. Concentration-dependent induction of ALA synthase mRNA paralleled the increase in ALA synthase protein. Maximum induction of ALA synthase was observed between 5 and 10 h post-treatment in both cell lines. Induction of ALA synthase mRNA in Huh-7 cells, but not HepG2 cells, was associated with an increase in ALA synthase mRNA stability. Okadaic acid also induced heme oxygenase-1 mRNA in both cell lines, but the magnitude of induction was only twofold, and was rapid and transient. Okadaic acid and phorbol 12-myristate 13-acetate significantly decreased heme-mediated induction of heme oxygenase-1 mRNA in both Huh-7 and HepG2 cells. Wortmannin diminished the heme-mediated induction of heme oxygenase-1 mRNA in HepG2 cells, but not Huh-7 cells. These results report a novel property of okadaic acid to affect heme metabolism in human cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号