共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have previously shown that the maize transposable element Ds1 introduced into maize plants by agroinfection can be excised from the genome of geminivirus maize streak virus (MSV). Excision depended strictly on the presence of an active Ac element in the plants. In this study, the excision products or footprints left in the MSV genome after Ds1 excision were extensively characterized and the effects of flanking sequences on Ds1 excision were analysed. Most types of footprints obtained were comparable to those described for Ds1 excision in the maize genome, and could be explained by the models proposed for excision of plant transposable elements. In two revertants, however, some terminal sequences of the Ds1 element were found to have been left behind at the excision site. The finding of this novel type of Ds1 footprint indicated that gene conversion events occurred during and/or after Ds1 excision from the MSV genome. A partial deletion of one copy of the 8 by duplications flanking the Ds1 element had no effect on the frequency or on the types of footprints of Ds1 excision from the MSV genome. Thus, the duplicated 8 by sequences flanking the transposable element are not involved in Ds1 excision. These results, as well as a statistical analysis of the modifications of the bases flanking the Ds1 element after excision, are discussed in terms of excision models. 相似文献
2.
Ana María Bravo-Angel Heinz-Albert Becker Reinhard Kunze Barbara Hohn Wen-Hui Shen 《Molecular genetics and genomics : MGG》1995,248(5):527-534
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function. 相似文献
3.
Ko Shimamoto Chikara Miyazaki Hisako Hashimoto Takeshi Izawa Kimiko Itoh Rie Terada Yoshishige Inagaki Shigeru Iida 《Molecular & general genetics : MGG》1993,239(3):354-360
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene. 相似文献
4.
Manfred Heinlein 《Molecular & general genetics : MGG》1995,246(1):1-9
The Ac elements present in the unstable wxm7 and wx-m9 alleles of maize trigger different patterns of Ds excision in trans. To determine whether this differential regulation is a feature of the Ac alleles themselves or is mediated by genetically distinct factors, maize plants heterozygous for the wx-m7 and wx-m9 alleles were crossed to tester strains homozygous for Ds reporter alleles. Kernels showing the variegation pattern characteristic for the Ac elements carried in the wx-m7 and wx-m9 alleles were found to be present in the ratios expected from the genetic constitution of the strains. The aleurone variegation caused by excision of the Ds reporter element and the endosperm variegation caused by excision of Ac from the wx-m7 and wx-m9 alleles themselves segregated with the original wx-m alleles. In addition, stable Wx and wx derivatives of wx-m9 that have lost Ac no longer exert any trans effect on the wx-m7 allele (and vice versa). Therefore it is concluded that the observed variegation patterns are autonomously determined by specific trans effects of the particular Ac element. 相似文献
5.
Nucleotide excision is a highly conserved DNA repair pathway for correcting DNA lesions that cause distortion of the double helical structure. The protein heterodimer XPC-Rad23 is involved in recognition of and binding to such lesions. We have isolated full-length cDNAs encoding two different members of the maize Rad23 family. The deduced amino acid sequences of both maize orthologues show a high degree of homology to plant and animal Rad23 proteins. The cDNA encoding maize Rad23A was cloned as an in-frame C-terminal fusion of glutathione S-transferase. This chimera was expressed in Escherichia coli as a soluble protein and purified to homogeneity using glutathione-agarose followed by MonoQ column chromatography. Purified recombinant maize Rad23 protein was used to generate polyclonal antibodies that cross-react with a approximately 48-kDa protein in extracts from plant as well as mammalian cells. The purified recombinant protein and antibodies would be useful reagents to study the biochemistry of nucleotide excision repair in plants. 相似文献
6.
Shoji Sugano Takeo Shobuike Tadayuki Takeda Akio Sugino Hideo Ikeda 《Molecular & general genetics : MGG》1994,243(1):1-8
We report here the first cloning of a chalcone flavonone isomerase gene (CHI) from maize. Northern blot experiments indicate that the maize CHI gene (ZmCHI1) is regulated in the pericarp by the P gene, a myb homologue. The ZmCHI1 gene encodes a 24.3 kDa product 55% and 58% identical to CHI-A and CHI-B from Petunia, respectively. This maize CHI gene has four exons and an intron-exon structure identical to the CHI-B gene of Petunia hybrida. RFLP mapping data indicate that some inbred lines contain two additional CHI-homologous sequences, suggesting an organization more complex than that found in Petunia or bean. The possibility that the additional CHI-homologous sequences are responsible for the lack of CHI mutants in maize will be discussed. 相似文献
7.
Cleavage polyembryony in maize 总被引:1,自引:0,他引:1
Summary Two types of cleavage polyembryony are described in the inbred line VIR 17 of maize. Suspensorial embryony was observed to occur spontaneously. Typical cleavage of the zygotic proembryo occurred spontaneously, but could also be induced by treating the developing caryopses with 2,4-Dichlorophenoxyacetic acid (2,4-D) on the second day after pollination. 2,4-D was active as a decorelative factor also evoking the expression of totipotency in individual proembryonal cells. 相似文献
8.
9.
10.
Summary Allelism tests between the standard Uq element (Uq1) and five newly activated germinal Uq elements (Uq2, Uq3, UQ4, Uq5, and Uq6) demonstrate that these new Uq elements are independent of Uq1. Gametes that either contain one Uq or various combinations of two different and phenotypically distinguishable Uq elements, have been constructed either with or without the a-ruq reporter allele. Genetic analyses of the progenies of the gametes (using the standard a-ruq tested line as the other parent) have indicated that (i) each Uq element, when present alone, has the capacity to express full activity except when a secondary transposition or loss of activity has occurred; (ii) all five new Uq elements are independent of Uq1 with respect to transposition activity; and (iii) these newly originated Uqs are clustered on one linkage group. Uq2 is allelic to Uq4, and Uq3 is allelic to Uq5, whereas Uq6 is linked to both allelic pairs. A putative linkage map of these Uq elements is presented. In reciprocal crosses there is a striking difference in phenotypic segregation of Uq; when transmitted via the male parent Uq loses full expression capacity. 相似文献
11.
J. L. Bennetzen R. P. Fracasso D. W. Morris D. S. Robertson M. J. Skogen-Hagenson 《Molecular & general genetics : MGG》1987,208(1-2):57-62
Summary The mutagenic activity of the maize transposable element system Mutator can be lost by outcrossing to standard, non-Mutator lines or by repetitive intercrossing of genetically diverse Mutator lines. Lines losing Mutator mutagenic activity in either manner retain high copy numbers (10–15 per diploid genome) of the Mutator-associated Mu transposable elements. Frequent transposition of Mu1-related elements is observed only in active Mutator lines, however. The loss of Mutator activity on intercrossing is correlated with an increase in the copy number of Mu1-like elements to 40–50 per diploid genome, implying a self-encoded or self-activated negative regulator of Mu1 transposition. The outcross loss of Mutator activity is only weakly correlated with a low Mu element copy number and may be due to the loss of a positive regulatory factor encoded by a subset of Mu1-like elements. Transposition of Mu elements in active Mutator lines generates multiple new genomic positions for about half the elements each plant generation. The appearance of Mu1-like elements in these new positions is not accompanied by equally high germinal reversion frequencies, suggesting that Mu1 may commonly transpose via a DNA replicative process. 相似文献
12.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events. 相似文献
13.
【目的】为探究转Cry1Ac/1Ab基因棉花对异色瓢虫生长发育及其捕食功能的影响。【方法】以转Cry1Ac/1Ab基因棉与其亲本常规棉为实验材料,利用取食不同棉花品种叶片的棉铃虫饲喂异色瓢虫幼虫。【结果】与常规亲本棉相比,取食饲喂转基因棉花叶片的初孵棉铃虫幼虫的异色瓢虫幼虫从1龄发育至化蛹期时间延长0.77 d,但差异不显著;除1龄幼虫体重增加(0.0773 mg)外,其余各龄期幼虫体重均有所下降,但差异均不显著;异色瓢虫1、2、3、4龄幼虫对初孵棉铃虫捕食量均随棉铃虫密度的增加而增加,捕食功能反应均符合HollingⅡ圆盘方程。【结论】转Cry1Ac/1Ab基因棉花对异色瓢虫生长发育无显著影响,饲喂取食转Cry1Ac/1Ab基因棉花的棉铃虫对异色瓢虫捕食功能无显著差异。 相似文献
14.
Susanne Knapp George Coupland Helmut Uhrig Peter Starlinger Francesco Salamini 《Molecular & general genetics : MGG》1988,213(2-3):285-290
Summary The maize transposable element Ac has been introduced into potato via the T-DNA (transferred DNA) of Agrobacterium tumefaciens. Ac was inserted within the untranslated leader region of a neomycin phosphotransferase II (NPT-II) gene such that excision restored NPT-II activity. Two approaches to monitor Ac excision were used. (i) Using an Agrobacterium strain harbouring plasmid pGV3850::pKU3, leaf discs were selected on kanamycin (Km) after exposure to Agrobacterium. (ii) Using a strain containing plasmid pGV3850HPT::pKU3, the leaf discs were selected on hygromycin (Hm) and the resulting shoots were checked for NPT-II expression. Thirteen kanamycin resistant shoots transformed with pGV3850::pKU3 were isolated, suggesting that Ac had excised from the NPT-II gene. Out of 43 hygromycin resistant shoots transformed with pGV3850HPT::pKU3, 22 expressed the NPT-II gene, indicating that Ac had undergone excision in approximately 50% of the hygromycin resistant shoots. Southern analysis revealed that all kanamycin resistant plants contained the DNA restriction fragments expected when Ac excises from the NPT-II gene. The presence of Ac at new locations within the genomic DNA of several transformants was also detected. 相似文献
15.
Takafumi Maekawa Junko Amemura-Maekawa Eiichi Ohtsubo 《Molecular & general genetics : MGG》1993,236(2-3):267-274
Summary Various segments of Tn3 transposase were fused individually to -galactosidase, and the resulting fusion proteins were examined for their DNA binding ability by a nitrocellulose filter binding assay. Analyses of a series of the fusion proteins revealed that the N-terminal segment of the transposase (amino acid positions 1–242; the transposase gene encodes 1004 residues in all) had specific DNA binding ability for the 38 bp terminal inverted repeat (IR) sequence, and the central segment (amino acid positions 243–632) had non-specific DNA binding ability. Further analyses of each of the two regions revealed that the N-terminal segment could be divided into at least two subsegments (amino acid positions 1–86 and 87–242), neither of which had specific DNA binding ability, but which both possessed nonspecific DNA binding ability. The central segment included two subsegments (amino acid positions 243–289 and 439–505) with non-specific DNA binding ability. These results and other observations suggest that Tn3 transposase has several domains including those responsible for non-specific DNA binding, and a combination of two or more domains gives rise to specific DNA binding activity. The C-terminal segment of the transposase (amino acid positions 633-1004), which is very well conserved among transposases encoded by Tn3 family transposons, had no DNA binding ability. This segment may represent the main part of the catalytic domain responsible for the initiation step of transposition. 相似文献
16.
17.
【目的】安全评价是转基因品种研发的重要保障,为明确转基因玉米Bt-799在生物多样性影响方面的安全性,并为其在吉林春玉米区种植提供安全保证,开展了转基因玉米Bt-799对田间节肢动物群落多样性影响的研究。【方法】综合利用直接观察法和地面陷阱法,以多样性指数、均匀度指数、优势度指数等参数以及主要种群动态作为评价指标,系统研究转基因玉米Bt-799对田间节肢动物群落多样性的影响。【结果】转基因玉米Bt-799较之对应的非转基因对照郑58在田间节肢动物群落结构参数、主要种群动态等方面均无显著差异。【结论】转Cry1Ac基因玉米Bt-799在吉林省种植,不会对田间节肢动物群落多样性造成显著不良影响。 相似文献
18.
19.
J. Brown V. Sundaresan 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,81(2):185-188
Summary We find that recombination between two alleles of the maize A1 locus that contain transposon insertions at known molecular positions can occur at 0.04–0.08 cM per kbp (centimorgan per kilobase pair), which is two orders of magnitude higher than the recombination rate for the whole maize genome. It is however, close to the rates found within the bronze locus, another maize structural gene for which both genetic and molecular data are available. This observation supports the idea that the genome consists of regions that are highly recombinogenic — in some cases, at least, structural genes — interspersed with regions that are less recombinogenic. 相似文献
20.
Gabor L. Igloi Andreas Meinke István D?ry Hans K?ssel 《Molecular & general genetics : MGG》1990,221(3):379-394
Summary The genes (rpo B/C1/C2) coding for the , , subnits of maize (Zea mays) chloroplast RNA polymerase have been located on the plastome and their nucleotide sequences established. The operon is part of a large inversion with respect to the tobacco and spinach chloroplast genomes and is flanked by the genes trnC and rps2. Notable features of the nucleotide sequence are the loss of an intron in rpoC1, and an insertion of approximately 450 by in rpOC2 compared to the dicotyledons tobacco, spinach and liver-wort. The derived amino acid sequence of this additional monocotyledon specific sequence is characterized by acidic heptameric repeat units containing stretches of glutamic acid, tyrosines and leucines with regular spacing. Other structural motifs, such as a nucleotide binding domain in the subunit and a zinc finger in the subunit, are compared at the amino acid level throughout the RNA polymerase subunits with the enzymes from other organisms in order to identify functionally important conserved regions.The sequence data presented in this paper will appear in the EMBL/Gen Bank/DDBJ Nucleotide Databases under the accession number X17318 相似文献