首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

2.
In basophils, mast cells, and the RBL-2H3 tumor mast cell line, cross-linking the high-affinity immunoglobulin E receptor (Fc epsilon R1) stimulates a series of responses, particularly the activation of phospholipase C (PLC), that lead to allergic and other immediate hypersensitivity reactions. The mechanism of activation of PLC, however, is not clear. Here, we show that cross-linking Fc epsilon R1 on RBL-2H3 cells causes the tyrosine phosphorylation of at least 12 cellular proteins, including PLC gamma 1 (PLC gamma 1) and the receptor beta and gamma subunits. 32P-labeled PLC gamma 1 can be detected by anti-phosphotyrosine antibody as early as 10 s after the addition of antigen. The tyrosine-phosphorylated 33-kDa beta subunit and 9- to 11-kDa gamma subunit of the Fc epsilon R1 are additionally phosphorylated on serine and theonine residues, respectively, and are found as complexes with other phosphotyrosine-containing proteins in antigen-stimulated cells. Our results indicate a means by which the Fc epsilon R1 may control PLC activity in RBL-2H3 cells and raise the possibility that other receptor-mediated signalling events in mast cells may also be controlled through protein tyrosine phosphorylation.  相似文献   

3.
The gamma subunit of the high affinity IgE receptor, Fc epsilon RI, is a member of a family of proteins which form disulfide-linked dimers. This family also includes the zeta- and eta-chains of the T cell receptor. Engagement of Fc epsilon RI activates src-related protein tyrosine kinases in basophils and mast cells. However, the role of individual subunits of Fc epsilon RI in this activation is still not known. In an effort to determine the function of Fc epsilon RI-gamma, we used chimeric proteins containing the extracellular and transmembrane domains of the alpha chain of the human interleukin 2 receptor (Tac) and the cytoplasmic domains of either T cell receptor-zeta or Fc epsilon RI-gamma. We show that while cross-linking of the Tac chimeras in the rat basophilic leukemia cell line RBL-2H3 resulted in the tyrosine phosphorylation of a subset of proteins and a portion of the degranulation normally observed after Fc epsilon RI-mediated stimulation, no detectable activation of p56lyn or pp60c-src was observed. In contrast, an apparent transient deactivation of these two kinases was observed after Tac chimera cross-linking. These observations suggest that Fc epsilon RI-gamma is responsible for some, but not all, of the signaling that occurs after engagement of its receptor, and that other receptor subunits may also play important roles in this signaling process.  相似文献   

4.
We have investigated the effects of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), on antigen-mediated signaling in the RBL-2H3 mast cell model. In RBL-2H3 cells, the cross-linking of high affinity IgE receptors (Fc epsilon R1) activates at least two cytoplasmic protein tyrosine kinases, Lyn and Syk, and stimulates secretion, membrane ruffling, spreading, pinocytosis, and the formation of actin plaques implicated in increased cell-substrate adhesion. In addition, Fc epsilon R1 cross-linking activates PI 3-kinase. It was previously shown that wortmannin causes a dose-dependent inhibition of PI 3-kinase activity and also inhibits antigen-stimulated degranulation. We report that the antigen-induced synthesis of inositol(1,4,5)P3 is also markedly inhibited by wortmannin. Consistent with evidence in other cell systems implicating phosphatidylinositol(3,4,5)P3 in ruffling, pretreatment of RBL-2H3 cells with wortmannin inhibits membrane ruffling and fluid pinocytosis in response to Fc epsilon R1 cross-linking. However, wortmannin does not inhibit antigen-induced actin polymerization, receptor internalization, or the actin-dependent processes of spreading and adhesion plaque formation that follow antigen stimulation in adherent cells. Wortmannin also fails to inhibit either of the Fc epsilon R1-coupled tyrosine kinases, Lyn or Syk, or the activation of mitogen-activated protein kinase as measured by in vitro kinase assays. Strikingly, there is substantial in vitro serine/threonine kinase activity in immunoprecipitates prepared from Fc epsilon R1-activated cells using antisera to the p85 subunit of PI 3-kinase. This activity is inhibited by pretreatment of the cells with wortmannin or by the direct addition of wortmannin to the kinase assay, suggesting that PI 3-kinase itself is capable of acting as a protein kinase. We conclude that Fc epsilon R1 cross-linking activates both lipid and protein kinase activities of PI 3-kinase and that inhibiting these activities with wortmannin results in the selective block of a subset of Fc epsilon R1-mediated signaling responses.  相似文献   

5.
Ligation of high-affinity IgE receptor I (FcεRI) on RBL-2H3 cells leads to recruitment of FcεRI and type II phosphatidylinositol 4-kinases (PtdIns 4-kinases) into lipid rafts. Lipid raft integrity is required for the activation of type II PtdIns 4-kinases and signal transduction through FcεRIγ during RBL-2H3 cell activation. However, the molecular mechanism by which PtdIns 4-kinases are coupled to FcεRI signaling is elusive. Here, we report association of type II PtdIns 4-kinase activity with FcεRIγ subunit in anti-FcεRIγ immunoprecipitates. FcεRIγ-associated PtdIns 4-kinase activity increases threefold upon FcεRI ligation in anti-FcεRIγ immunoprecipitates. Biochemical characterization of PtdIns 4-kinase activity associated with FcεRIγ reveals that it is a type II PtdIns 4-kinases. Canonical tyrosine residues mutation in FcεRIγ ITAM (Y65 and Y76) reveals that these two tyrosine residues in γ subunit are required for its interaction with type II PtdIns 4-kinases.  相似文献   

6.
The protein tyrosine kinase Syk plays an essential role in Fc epsilon RI-mediated histamine release in mast cells by regulating the phosphorylation of other proteins. We investigated the functional role of a putative Syk phosphorylation site, Tyr317. This tyrosine in the linker region of Syk is a possible site for binding by the negative regulator Cbl. Syk with Tyr317 mutated to Phe (Y317F) was expressed in a Syk-negative variant of the RBL-2H3 mast cells. Compared with cells expressing wild-type Syk, expression of the Y317F mutant resulted in an increase in the Fc epsilon RI-mediated tyrosine phosphorylation of phospholipase C-gamma and a dramatic enhancement of histamine release. The in vivo Fc epsilon RI-induced tyrosine phosphorylation of wild-type Syk and that of the Y317F mutant were similar. Although the Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins was enhanced in the cells expressing the Y317F Syk, the phosphorylation of some other molecules, including the receptor subunits, Vav and mitogen-activated protein kinase, was not increased. The Fc epsilon RI-induced phosphorylation of Cbl was downstream of Syk kinase activity and was unchanged by expression of the Y317F mutation. These data indicate that Tyr317 in the linker region of Syk functions to negatively regulate the signals leading to degranulation.  相似文献   

7.
In RBL-2H3 rat basophilic leukemia cells, Fc epsilon R1 crosslinking by multivalent antigen stimulates phosphatidylinositol (PI) turnover and Ca2+ influx and causes functional responses that include secretion, membrane ruffling and actin polymerization. Here, we show that the tyrosine kinase inhibitor, genistein, inhibits antigen-induced PI turnover, determined from assays of 1,4,5-inositol trisphosphate production, and impairs receptor-mediated secretion, ruffling and actin polymerization. Genistein has little effect on several functional responses to stimuli that bypass PI hydrolysis (ionomycin-induced secretion, phorbol ester-induced ruffling) but it inhibits phorbol ester-induced actin polymerization. These data implicate a common tyrosine kinase-dependent event, most likely the activation of phospholipase C gamma, in the Fc epsilon R1-mediated stimulation of PI turnover, secretion and ruffling. There may be additional tyrosine kinase-mediated events in the actin assembly pathway.  相似文献   

8.
Some tea polyphenolic compounds including (-)-epigallocatechin gallate (EGCG) have been shown to inhibit histamine release from mast cells through poorly understood mechanisms. By using a mast cell model rat basophilic leukemia (RBL-2H3) cells we explored the mechanism of the inhibition. EGCG inhibited histamine release from RBL-2H3 cells in response to antigen or the calcium-ionophore A23187, while (-)-epicatechin (EC) had little effect. Increased tyrosine phosphorylation of several proteins including approximately 120 kDa proteins occurred in parallel with the secretion induced by either stimulation. EGCG also inhibited tyrosine phosphorylation of the approximately 120-kDa proteins induced by either stimulation, whereas EC did not. The tyrosine kinase-specific inhibitor piceatannol inhibited the secretion and tyrosine phosphorylation of these proteins induced by either stimulation also. Further analysis showed that the focal adhesion kinase pp125(FAK) was one of the approximately 120-kDa proteins. These findings suggest that EGCG prevents histamine release from mast cells mainly by inhibiting tyrosine phosphorylation of proteins including pp125(FAK).  相似文献   

9.
We have previously shown that Janus kinase 3, a member of the family of non-receptor protein tyrosine kinases, plays a critical role in the regulation of FcεRI-mediated mast cell responses. In the current study, we investigated the role of another JAK family member, JAK2, in these responses. Our results show that the treatment of IgE-sensitized mouse mast cells with an inhibitor of JAK2 (AG490) blocked the release of leukotriene C4 in a dose-dependent fashion after antigen challenge. However, prostaglandin PG D2 production and degranulation were not affected under identical experimental conditions. Transfection of RBL-2H3 mast cells with JAK-2 specific small interfering RNA resulted in a 50% reduction of LTC4 release in response to FcεRI crosslinking, but did not inhibit mast cell degranulation or calcium ionophore-induced LTC4 release, indicating involvement of JAK2 in IgE receptor-mediated leukotriene release. Taken together, these data suggest that JAK2 is a critical regulator of IgE/antigen-induced production of LTC4 in mast cells.  相似文献   

10.
The activation of mast cells by immunoglobulin E-mediated stimuli is considered as a central event in allergic responses. In this regard, chitosan oligosaccharides (COS) of two different molecular weight ranges (1–3 kDa and 3–5 kDa) were investigated for their capabilities against the activation of RBL-2H3 mast cell sensitized with dinitrophenyl-specific immunoglobulin E antibody and stimulated by antigen dinitrophenyl-bovine serum albumin. It was found that COS significantly inhibited RBL-2H3 cell degranulation via attenuating the releases of histamine and β-hexosaminidase. Moreover, the inhibitory activity of COS was accompanied by a reduction in intracellular Ca2+ elevation. Notably, the expression of immunoglobulin Fc epsilon receptor I (Fc?RI) in RBL-2H3 cells was down-regulated by COS treatment in a dose-dependent manner. The suppressive effect of COS on RBL-2H3 cell activation suggested that COS may be potential candidates of novel inhibitors against allergic reactions.  相似文献   

11.
Recently, we demonstrated that aggregation of the high affinity IgE receptor in rat basophilic leukemia (RBL-2H3) cells results in rapid tyrosine phosphorylation of a 72-kDa protein (pp72). Here we investigated the relationship of pp72 phosphorylation to guanine nucleotide-binding protein (G protein) activation and phosphatidylinositol hydrolysis. The activation of G proteins by NaF in intact cells or by guanosine 5'-O-(3-thiotriphosphate) in streptolysin O-permeabilized cells induced both phosphatidylinositol hydrolysis and histamine release without tyrosine phosphorylation of pp72. Similarly, in RBL-2H3 cells expressing the G protein-coupled muscarinic acetylcholine receptor, carbachol activated phospholipase C and induced secretion without concomitant pp72 phosphorylation. Therefore, pp72 phosphorylation was not induced by G protein activation or as a consequence of phosphatidylinositol hydrolysis. To investigate whether pp72 tyrosine phosphorylation precedes the activation of phospholipase C, we studied the effect of the tyrosine kinase inhibitor genistein. Preincubation of cells with genistein decreased, in parallel, antigen-induced tyrosine phosphorylation of pp72 (IC50 = 34 micrograms/ml) and histamine release (IC50 = 31 micrograms/ml). However, genistein at concentrations of up to 60 micrograms/ml did not inhibit phosphatidylinositol hydrolysis nor did it change the amount of the secondary messenger inositol (1,4,5)-triphosphate. Previous observations showed that there was no pp72 tyrosine phosphorylation after activation of protein kinase C or after an increase in intracellular calcium. Taken together, these results suggest that pp72 tyrosine phosphorylation represents a distinct, independent signaling pathway induced specifically by aggregation of the Fc epsilon RI.  相似文献   

12.
Fisetin (3,7,3′,4′-tetrahydroxyflavone), a naturally occurring bioactive flavonoid, has been shown to inhibit inflammation. However, little is known about the effect of fisetin on immunoglobulin E (IgE)-mediated allergic responses. In this study, the effect of fisetin on rat basophilic leukemia (RBL-2H3) cell-mediated allergic reactions was investigated. Fisetin inhibited β-hexosaminidase release and decreased the level of interleukin-4 and tumor necrosis factor-α mRNA in IgE/antigen (IgE/Ag)-stimulated RBL-2H3 cells. To elucidate the antiallergic mechanism, we examined the levels of signaling molecules responsible for degranulation and release of inflammatory cytokines. Fisetin decreased the levels of activated spleen tyrosine kinase, Gab2 proteins, linker of activated T cells, extracellular signal-related kinase 1/2 in the IgE/Ag-stimulated RBL2H3 cells, and NFκB and STAT3 proteins activated in the ear tissue of mice with passive cutaneous anaphylaxis (PCA). In addition, fisetin significantly lowered of FcɛRI α-subunit mRNA expression. Consistent with the cellular data, fisetin markedly suppressed RBL-2H3 cell-dependent PCA in IgE/Ag-sensitized mice. These results suggest that fisetin may have potential as a therapeutic agent for the treatment of allergic diseases.  相似文献   

13.
Rat basophilic leukemia (RBL-2H3) cells, like mast cells and basophils, carry monovalent membrane receptors with high affinity for IgE (Fc epsilon R). Cross-linking of these receptors provides the immunologic stimulus which initiates a series of biochemical events, culminating in secretion of inflammatory mediators. In an attempt to identify membrane components involved in the stimulus-secretion coupling of these cells, hybridomas were produced from splenocytes of mice immunized with intact RBL-2H3 cells. Here we report the production of a mAb (designated G63) that inhibits the Fc epsilon R-mediated secretion from RBL cells. At low degrees of Fc epsilon R aggregation, the mAb G63-induced inhibition may be complete, whereas at the maximum of secretion the inhibition is in the range of 30 to 40%. The relative degree of inhibition of secretion is dependent on the dose of mAb G63. Furthermore, inhibition requires the bivalency of G63, as the Fab fragments are inactive. The number of antigenic epitopes recognized by G63 per RBL-2H3 cell is 1.8 x 10(4) epitopes/cell, as determined by direct binding studies of 125I-labeled Fab fragments of G63. This number is 20 to 30 times smaller than that of Fc epsilon R on the same cells. The membrane component to which G63 binds has been identified by immunoprecipitation as a glycoprotein with an apparent Mr of 58 to 70 kDa. All of these results, and the fact that no competition for binding to RBL cells between mAb G63 and IgE can be resolved, indicate that mAb G63 binds to a membrane component which is distinct from the Fc epsilon R. mAb G63 suppresses the Fc epsilon R-mediated rise in cytoplasmic concentration of free Ca2+ ions, known to be one of the biochemical signals involved in the stimulus-secretion coupling in RBL-2H3 cells. G63 does not affect, however, the degranulation induced by the Ca2+ ionophore A23187. Therefore, mAb G63 probably exerts its inhibitory effect on a step preceding the rise in cytoplasmic free Ca2+. Thus, mAb G63 defines a previously unidentified membrane component that is involved in one of the early steps of the RBL-2H3 activation mediated by their Fc epsilon R.  相似文献   

14.
15.
Three biologically active monoclonal antibodies (mAbs) specific for the monovalent, high-affinity membrane receptor for IgE (Fc epsilon R) were employed in analysing the secretory response of mast cells of the RBL-2H3 line to crosslinking of their Fc epsilon R. All three mAbs (designated F4, H10 and J17) compete with each other and with IgE for binding to the Fc epsilon R. Their stoichiometry of binding is 1 Fab:1 Fc epsilon R, hence, the intact mAbs can aggregate the Fc epsilon Rs to dimers only. Since all three mAbs induce secretion, we conclude that Fc epsilon R dimers constitute a sufficient 'signal element' for secretion of mediators for RBL-2H3 cells. The secretory dose-response of the cells to these three mAbs are, however, markedly different: F4 caused rather high secretion, reaching almost 80% of the cells' content, while J17 and H10 induced release of only 30-40% mediators content. Both the intrinsic affinities and equilibrium constants for the receptor dimerization were derived from analysis of binding data of the Fab fragments and intact mAbs. These parameters were used to compute the extent of Fc epsilon R dimerization caused by each of the antibodies. However, the different secretory responses to the three mAbs could not be rationalized simply in terms of the extent of Fc epsilon R dimerization which they produce. This suggests that it is not only the number of crosslinked Fc epsilon Rs which determines the magnitude of secretion-causing signal, but rather other constraints imposed by each individual mAb are also important.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

17.
A monoclonal antibody (mAb), AD1, was isolated that recognized a cell surface protein on rat basophilic leukemia cells (RBL-2H3). At high concentration, this antibody inhibited IgE-mediated but not calcium ionophore-induced histamine release (49% inhibition at 100 micrograms/ml). The mAb AD1 did not inhibit the binding of IgE or of several antibodies directed to the high affinity IgE receptor (Fc epsilon RI). Likewise, IgE did not inhibit mAb AD1 binding. However, several anti-Fc epsilon RI antibodies did inhibit mAb AD1 binding as intact molecules but not as Fab fragments. Therefore, the sites on the cell surface to which mAb AD1 binds are close to Fc epsilon RI. The mAb AD1 immunoprecipitated a broad, 50-60-kDa band from 125I-surface-labeled RBL-2H3 cells that upon peptide N-glycosidase F treatment was transformed into a sharp 27-kDa band. A similar 27-kDa protein was immunoprecipitated from surface-radiolabeled cells after culture with tunicamycin. Thus, the protein recognized by mAb AD1 is highly glycosylated with predominantly N-linked oligosaccharides. The N-terminal sequence of 43 amino acids was found to be different from any subunit of Fc epsilon RI but nearly identical to that of the human melanoma-associated antigen ME491. Therefore, mAb AD1 binds to a surface glycoprotein on RBL-2H3 cells sterically close to the Fc epsilon RI but distinct from the recognized subunits of the receptor.  相似文献   

18.
The SH2-containing protein tyrosine phosphatase1 (SHP-1) is important for signaling from immune receptors. To investigate the role of SHP-1 in mast cells we overexpressed the wild-type and the phosphatase-inactive forms of SHP-1 in rat basophilic leukemia 2H3 (RBL-2H3) mast cell line. The phosphatase-inactive SHP-1 (C453S or D419A) retains its ability to bind tyrosine phosphorylated substrates and thereby competes with the endogenous wild-type enzyme. Overexpression of wild-type SHP-1 decreased the FcepsilonRI aggregation-induced tyrosine phosphorylation of the beta and gamma subunits of the receptor whereas the dominant negative SHP-1 enhanced phosphorylation. There were also similar changes in the tyrosine phosphorylation of Syk. However, receptor-induced histamine release in the cells expressing either wild-type or dominant negative SHP-1 was similar to that in the parental control cells. In contrast, compared with the parental RBL-2H3 cells, FcepsilonRI-induced c-Jun N-terminal kinase phosphorylation and the level of TNF-alpha mRNA was increased in the cells overexpressing wild-type SHP-1 whereas the dominant negative SHP-1 had the opposite effect. The substrate-trapping mutant SHP1/D419A identified pp25 and pp30 as two major potential substrates of SHP-1 in RBL-2H3 cells. Therefore, SHP-1 may play a role in allergy and inflammation by regulating mast cell cytokine production.  相似文献   

19.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

20.
In mast cells, basophils, and the RBL-2H3 tumor mast cell model, crosslinking cell surface IgE-receptor complexes by multivalent ligands activates a signal transduction pathway that leads to the secretion of histamine, serotonin, and other inflammatory mediators. Receptor crosslinking in RBL-2H3 cells also changes cell surface morphology and increases F-actin assembly. Previously, Robertson et al. demonstrated that crosslinked IgE-receptor complexes become associated with the Triton X-100-insoluble fraction (the "cytoskeleton") of RBL-2H3 cells and raised the possibility that receptor-cytoskeletal association may be a required step in the stimulation of secretion. The studies reported here confirm by flow cytometry that crosslinking cell surface IgE by antigen induces the association of the crosslinked complexes with the detergent-insoluble fraction. Dose-response studies, also reported here, indicate that the detergent insolubility of the complexes does not correlate with secretion. Thus, secretion increases with antigen concentration to a maximum beyond which more antigen causes less, not more, secretion. There is little residual detergent-insoluble IgE at the concentrations of antigen that promote optimal secretion, whereas the association of IgE with the detergent-insoluble fraction is maximal at the high antigen concentrations that result in reduced secretion. The addition of monovalent hapten to reduce the amount of crosslinking caused by high concentrations of antigen increases secretion and simultaneously reduces the association of IgE with the detergent-insoluble fraction. Dihydrocytochalasin B, an inhibitor of antigen-stimulated actin polymerization, also increases the rate and extent of secretion and simultaneously delays the association of crosslinked IgE-receptor complexes with the detergent-insoluble fraction. From these data, we propose that the association of crosslinked IgE receptors with the detergent-insoluble fraction of RBL-2H3 cells increases with increased receptor crosslinking, is enhanced by antigen-induced actin polymerization, and is more likely related to the termination than the stimulation of secretion. The ligand-induced conversion of receptors to a detergent-insoluble form is not restricted to mast cells but occurs in a variety of cell types. Its general function may be to limit the generation or transmission of transmembrane signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号