首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Glutamate dehydrogenase (GDH) has recently been shown to be involved in two genetic disorders of hyperinsulinemic hypoglycemia in children. These include the hyperinsulinism/hyperammonemia syndrome caused by dominant activating mutations of GLUD1 which interfere with inhibitory regulation by GTP and hyperinsulinism due to recessive deficiency of short-chain 3-hydroxy-acyl-CoA dehydrogenase (SCHAD, encoded by HADH1). The clinical manifestations of the abnormalities in pancreatic ß-cell insulin regulation include fasting hypoglycemia, as well as protein-sensitive hypoglycemia. The latter is due to abnormally increased sensitivity of affected children to stimulation of insulin secretion by the amino acid, leucine. In patients with GDH activating mutations, mild hyperammonemia occurs in both the basal and protein-fed state, possibly due to increased renal ammoniagenesis. Some patients with GDH activating mutations appear to be at unusual risk of developmental delay and generalized epilepsy, perhaps reflecting consequences of increased GDH activity in the brain. Studies of these two disorders have been carried out in mouse models to define the mechanisms of insulin dysregulation. In SCHAD deficiency, the activation of GDH is due to loss of a direct inhibitory protein-protein interaction between SCHAD and GDH. These two novel human disorders demonstrate the important role of GDH in insulin regulation and illustrate unexpectedly important reasons for the unusually complex allosteric regulation of GDH.  相似文献   

2.
3.
Nitric oxide (NO) is known to be a potent messenger in the intracellular signal transduction system in many tissues. In pancreatic beta cells, NO has been reported to be formed from L-arginine through NO synthase. To elucidate the effect of NO on insulin secretion and to investigate the intracellular mechanism of its effect, we have used sodium nitroprusside (SNP) as a NO donor. SNP inhibited glucose-induced insulin secretion in a dose-dependent manner, and its effect was reversed by hemoglobin, a known NO scavenger. However, glyceraldehyde- induced insulin secretion was not affected by SNP. Since the closure of ATP-sensitive K+ channels (KATP channel) has been established as a key step in glucose-induced insulin secretion, we have directly assessed the effect of SNP on KATP channel activity using the patch clamp technique. The KATP channel activity reduced by glucose was found to be reversibly activated by the addition of SNP, and this activation was able to be similarly reproduced by applying S-Nitroso-N-acetyl-DL- penicillamine (SNAP), another NO generator. Furthermore, these activating effects were completely eliminated by hemoglobin, in accordance with the reversibility in inhibition of glucose-induced insulin release. However, SNP could not affect the KATP channel suppression by ATP applied to the inside of the plasma membrane. The activation of the KATP channel by NO, therefore, seems to be due to the decreased ATP production attributable to impairment of glucose metabolism in beta cells. Since SNP exhibited no effect on glyceraldehyde-induced KATP channel inhibition, NO may disturb a glycolytic step before glyceraldehyde-3-phosphate. The KATP channel activation by 2-deoxyglucose through presumable ATP consumption due to its phosphorylation by glucokinase was, however, not affected even in the presence of SNP. But in the permeabilized beta cells made by exposure to a low concentration (0.02 U/ml) of streptolysin O (open cell-attached configuration), SNP reopens KATP channels which have been eliminated by fructose-6-phosphate, while this effect was not observed in the KATP channels inhibited by fructose-1,6-bisphosphate. On the other hand, in rat ventricular myocyte KATP channels were not activated by SNP even under a low concentration of glucose. From these observations, the inhibition of phosphofructokinase activity is probably the site responsible for the impairment of glucose metabolism induced by NO in pancreatic beta cells. NO, therefore, seems to be a factor in the deterioration of glucose-induced insulin secretion from pancreatic beta cells through a unique intracellular mechanism.  相似文献   

4.
Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and adipocyte gene expression in adipocytes. In this study, we have shown for the first time the gene expression profile in isolated rat adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The rat adipocytes were treated with 100 muM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. A total of 633 or 427 genes was up-regulated (>1.5-fold) by the treatment of adipocytes with C3G or Cy, respectively. The up-regulated genes include lipid metabolism and signal transduction-related genes, however, the altered genes were partly different between the C3G- and Cy-treated groups. Based on the gene expression profile, we demonstrated the up-regulation of hormone sensitive lipase and enhancement of the lipolytic activity by the treatment of adipocytes with C3G or Cy. These data have provided an overview of the gene expression profiles in adipocytes treated with anthocyanins and identified new responsive genes with potentially important functions in adipocytes related with obesity and diabetes that merit further investigation.  相似文献   

5.
6.
ATP-sensitive potassium (KATP) channels play a central role in glucose-stimulated insulin secretion (GSIS) by pancreatic beta-cells. Activity of these channels is determined by their open probability (Po) and the number of channels present in a cell. Glucose is known to reduce Po, but whether it also affects the channel density is unknown. Using INS-1 model beta-cell line, we show that the expression of K(ATP) channel subunits, Kir6.2 and SUR1, is high at low glucose, but declines sharply when the ambient glucose concentration exceeds 5mM. In response to glucose deprivation, channel synthesis increases rapidly by up-regulating translation of existing mRNAs. The effects of glucose deprivation could be mimicked by pharmacological activation of 5'-AMP-activated protein kinase with 5-aminoimidazole-4-carboxamide ribonucleotide and metformin. Pancreatic beta-cells which have lost their ability for GSIS do not show such changes implicating a possible (patho-)physiological link between glucose-regulated KATP channel expression and the capacity for normal GSIS.  相似文献   

7.
8.
The critical involvement of ATP-sensitive potassium (KATP) channels in insulin secretion is confirmed both by the demonstration that mutations that reduce KATP channel activity underlie many if not most cases of persistent hyperinsulinemia, and by the ability of sulfonylureas, which inhibit KATP channels, to enhance insulin secretion in type II diabetics. By extrapolation, we contend that mutations that increase beta-cell KATP channel activity should inhibit glucose-dependent insulin secretion and underlie, or at least predispose to, a diabetic phenotype. In transgenic animal models, this prediction seems to be borne out. Although earlier genetic studies failed to demonstrate a linkage between KATP mutations and diabetes in humans, recent studies indicate significant association of KATP channel gene mutations or polymorphisms and type II diabetes. We suggest that further efforts to understand the involvement of KATP channels in diabetes are warranted.  相似文献   

9.
ATP-sensitive potassium (KATP) channels couple the metabolic status of a cell to its membrane potential-a property that endows pancreatic beta-cells with the ability to regulate insulin secretion in accordance with changes in blood glucose. The channel comprises four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1). Here, we report that KATP channels undergo rapid internalisation from the plasma membrane by clathrin-mediated endocytosis. We present several lines of evidence to demonstrate that endocytosis is mediated by a tyrosine based signal (330YSKF333) located in the carboxy-terminus of Kir6.2 and that SUR1 has no direct role. We show that genetic mutations, Y330C and F333I, which cause permanent neonatal diabetes mellitus, disrupt this motif and abrogate endocytosis of reconstituted mutant channels. The resultant increase in the surface density of KATP channels would predispose beta-cells to hyperpolarise and may account for reduced insulin secretion in these patients. The data imply that endocytosis of KATP channels plays a crucial role in the (patho)-physiology of insulin secretion.  相似文献   

10.
The beta-cell ATP-sensitive potassium (KATP) channel controls insulin secretion by linking glucose metabolism to membrane excitability. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes that encode the sulfonylurea receptor 1 or the inward rectifier Kir6.2 subunit of the channel, is a major cause of congenital hyperinsulinism. Here, we report identification of a novel KCNJ11 mutation associated with the disease that renders a missense mutation, F55L, in the Kir6.2 protein. Mutant channels reconstituted in COS cells exhibited a wild-type-like surface expression level and normal sensitivity to ATP, MgADP, and diazoxide. However, the intrinsic open probability of the mutant channel was greatly reduced, by approximately 10-fold. This low open probability defect could be reversed by application of phosphatidylinositol 4,5-bisphosphates or oleoyl-CoA to the cytoplasmic face of the channel, indicating that reduced channel response to membrane phospholipids and/or long chain acyl-CoAs underlies the low intrinsic open probability in the mutant. Our findings reveal a novel molecular mechanism for loss of KATP channel function and congenital hyperinsulinism and support the importance of phospholipids and/or long chain acyl-CoAs in setting the physiological activity of beta-cell KATP channels. The F55L mutation is located in the slide helix of Kir6.2. Several permanent neonatal diabetes-associated mutations found in the same structure have the opposite effect of increasing intrinsic channel open probability. Our results also highlight the critical role of the Kir6.2 slide helix in determining the intrinsic open probability of KATP channels.  相似文献   

11.
12.
13.
Using preadipocyte implantation methods, we recently demonstrated that adipocytes in the visceral area change their function, as the expression of tumor necrosis factor-alpha (TNF-alpha) increases, thereby causing insulin resistance. In order to clarify the mechanism for changes in the function of adipocytes in visceral area, we examined the mRNA expression profiles in visceral fat tissue specimens. Four weeks after cell implantation, we performed a microarray analysis using the RNA of fat tissue specimens implanted either with 3T3-L1 cells or PBS alone. Sixty-three genes were thus isolated and the expression of matrix metalloproteinase-3 (MMP-3) mRNA was found to dramatically increase in the fat tissue specimens. The neutralization of MMP-3 protein inhibited adipogenesis and the free fatty acid-induced TNF-alpha secretion in 3T3-L1 adipocytes. These results suggest a potential role of MMP-3, which promotes the TNF-alpha secretion, thus contributing to the disturbance of the functions in the adipocytes which accumulate in the visceral area.  相似文献   

14.
The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh−/−). The hadh−/− mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh−/− mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh−/− mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh−/− islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh−/− islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh−/− islets also have increased [U-14C]glutamine oxidation. In contrast, hadh−/− mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh−/− islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh−/− islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.  相似文献   

15.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg(2+)) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. (86)Rb(+) flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of (86)Rb(+) efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC 50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

16.
To develop a non-invasive and sensitive diagnostic test for cancer using peripheral blood, we evaluated gene expression profiling of blood obtained from patients with cancer of the digestive system and normal subjects. The expression profiles of blood-derived total RNA obtained from 39 cancer patients (11 colon cancer, 14 gastric cancer, and 14 pancreatic cancer) was clearly different from those obtained from 15 normal subjects. By comparing the gene expression profiles of cancer patients and normal subjects, 25 cancer-differentiating genes (p < 5.0 × 10−6 and fold differences >3) were identified and an “expression index” deduced from the expression values of these genes differentiated the validation cohort (11 colon cancer, 8 gastric cancer, 18 pancreatic cancer, and 15 normal subjects) into cancer patients and normal subjects with 100% (37/37) and 87% (13/15) accuracy, respectively. Although, the expression profiles were not clearly different between the cancer patients, some characteristic genes were identified according to the stage and species of the cancer. Interestingly, many immune-related genes such as antigen presenting, cell cycle accelerating, and apoptosis- and stress-inducing genes were up-regulated in cancer patients, reflecting the active turnover of immune regulatory cells in cancer patients. These results showed the potential relevance of peripheral blood gene expression profiling for the development of new diagnostic examination tools for cancer patients.  相似文献   

17.
18.
19.
Lipid and glucose metabolism are adversely affected by diabetes, a disease characterized by pancreatic beta-cell dysfunction. To clarify the role of lipids in insulin secretion, we generated mice with beta-cell-specific overexpression (betaLPL-TG) or inactivation (betaLPL-KO) of lipoprotein lipase (LPL), a physiologic provider of fatty acids. LPL enzyme activity and triglyceride content were increased in betaLPL-TG islets; decreased LPL enzyme activity in betaLPL-KO islets did not affect islet triglyceride content. Surprisingly, both betaLPL-TG and betaLPL-KO mice were strikingly hyperglycemic during glucose tolerance testing. Impaired glucose tolerance in betaLPL-KO mice was present at one month of age, whereas betaLPL-TG mice did not develop defective glucose homeostasis until approximately five months of age. Glucose-simulated insulin secretion was impaired in islets isolated from both mouse models. Glucose oxidation, critical for ATP production and triggering of insulin secretion mediated by the ATP-sensitive potassium (KATP) channel, was decreased in betaLPL-TG islets but increased in betaLPL-KO islets. Islet ATP content was not decreased in either model. Insulin secretion was defective in both betaLPL-TG and betaLPL-KO islets under conditions causing calcium-dependent insulin secretion independent of the KATP channel. These results show that beta-cell-derived LPL has two physiologically relevant effects in islets, the inverse regulation of glucose metabolism and the independent mediation of insulin secretion through effects distal to membrane depolarization.  相似文献   

20.
Glutamate dehydrogenase (GDH) catalyzes reversible oxidative deamination of l-glutamate to alpha-ketoglutarate. Enzyme activity is regulated by several allosteric effectors. Recognition of a new form of hyperinsulinemic hypoglycemia, hyperinsulinism/hyperammonemia (HI/HA) syndrome, which is caused by gain-of-function mutations in GDH, highlighted the importance of GDH in glucose homeostasis. GDH266C is a constitutively activated mutant enzyme we identified in a patient with HI/HA syndrome. By overexpressing GDH266C in MIN6 mouse insulinoma cells, we previously demonstrated unregulated elevation of GDH activity to render the cells responsive to glutamine in insulin secretion. Interestingly, at low glucose concentrations, basal insulin secretion was exaggerated in such cells. Herein, to clarify the role of GDH in the regulation of insulin secretion, we studied cellular glutamate metabolism using MIN6 cells overexpressing GDH266C (MIN6-GDH266C). Glutamine-stimulated insulin secretion was associated with increased glutamine oxidation and decreased intracellular glutamate content. Similarly, at 5 mmol/l glucose without glutamine, glutamine oxidation also increased, and glutamate content decreased with exaggerated insulin secretion. Glucose oxidation was not altered. Insulin secretion profiles from GDH266C-overexpressing isolated rat pancreatic islets were similar to those from MIN6-GDH266C, suggesting observation in MIN6 cells to be relevant in native beta-cells. These results demonstrate that, upon activation, GDH oxidizes glutamate to alpha-ketoglutarate, thereby stimulating insulin secretion by providing the TCA cycle with a substrate. No evidence was obtained supporting the hypothesis that activated GDH produced glutamate, a recently proposed second messenger of insulin secretion, by the reverse reaction, to stimulate insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号