首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rozhkov SP 《Biofizika》2006,51(5):822-826
The previously derived formulas for the curves corresponding to sol-gel, liquid-liquid, and liquid-solid phase transitions, which correlate the critical molar composition of the water-protein-salt system with individual characteristic features of its component (protein charge z, the number of ions adsorbed v, the function of electrolyte activity A) are presented as curves in ordinary coordinates of protein solubility logS against salt concentration m3. Tendencies in changes in phase transition lines versus the v, z, and v/z ratio have been determined. Correlations of the salting-out curve and the salting-out coefficient with phase transitions are discussed.  相似文献   

2.
The structure of the anode space charge sheath of a vacuum arc is studied with allowance for the dependence of the negative anode fall on the ratio of the directed electron velocity v 0 to the electron thermal velocity v T for different values of the flux density of atoms evaporated from the anode. Poisson’s equation for the sheath potential is solved taking into account the electron space charge, fast cathode ions, and slow ions produced due to the ionization of atoms evaporated from the anode. The kinetic equation for atoms and slow anode ions is solved with allowance for ionization in the collision integral. Analytic solutions for the velocity distribution functions of atoms and slow ions and the density of slow ions are obtained. It is shown that the flux of slow ions substantially affects the spatial distribution of the electric field E(z) in the sheath. As the flux density increases, the nonmonotonic dependence E(z) transforms into a monotonic one and the sheath narrows. For a given flux of evaporated atoms Πa, the increase in the ratio of the directed electron velocity to the electron thermal velocity leads again to a nonmonotonic dependence E(z). As z increases, the electric field first increases, passes through the maximum, decreases, passes through the minimum E min, and then again increases toward the anode. There is a limiting value of the ratio (v 0/v T )* at which E min(z) vanishes. At v 0/v T > (v 0/V T )*, the condition for the existence of a steady-state sheath is violated and the profiles of the field and potential in the sheath become oscillating. The dependence of (v 0/v T )* on the flux density of evaporated atoms Π a is obtained. It is shown that the domain of existence of steady-state solutions in the sheath broadens with increasing Π a .  相似文献   

3.
Abstract

Experimental phase diagrams (A form, B form, Coil) were built in the coordinates (a, alcohol fraction: T, temperature) for the natural DNAs and poly d(A-T). The main parameter of the B-A transition,—cooperativity length, v o, was estimated by the slopes of the branches A-B, A-Coil, B-Coil in the vicinity of the triple point: v o +AD0- 10-20 base pairs, which corresponds to the energy for the B/A junction of 1.2–1.8 kcal/mol.

We discovered two new effects which are due to the coexistence of the three different conformations in one polymeric molecule: an increase in the melting temperature above that for the ‘ideal’ triple point (i.e. for the case of the ideal phase transitions); a widening of the melting curve within the B-A transition range.

The physics of these phenomena is discussed.  相似文献   

4.
2.5 and 1.25 per cent gelatin have been titrated potentiometrically in the absence of salts and in the presence of two concentrations (0.0750 and 0.0375µ) of NaCl, MgCl2, K2SO4, and MgSO4. The data have been used to calculate values of ± S = vz – (v – 1)z, where vz = v 2 – (v 2v) rx/18. The maximum and minimum values of S with NaCl were used to calculate the mean distance (rx) between like charges in gelatin. This is found to be 18 Å.u. or over (between acid or basic groups) which agrees with the probable value and the titration index dispersion. Thus the data with NaCl are shown to be normal and to obey the equation found to hold for simple weak electrolytes; namely, pK'' – pK = Sa See PDF for Equation where S is related to the valence and distance by the above equations. Using the NaCl data as a standard the deviations (ΔS) produced by the other salts are calculated and are found to agree quantitatively with the deviations calculated from equations derived for the simple weak electrolytes. This shows that in gelatin, as in the simple electrolytes, the deviations are related to the "apparent valences" (values which are a function of the true valence and the distance between the groups). The maximum "apparent valences" of gelatin are 2.4 for acid groups (in alkaline solution) and 1.8 for basic groups (in acid solution). These values correspond to the hypothetical condition of zero distance between the groups. They have no physical significance but have a practical utility first as mentioned above, and second in that they may be used in the unmodified Debye-Hückel equation to give the maximum effect of gelatin on the ionic strength. The true effect is probably even lower than these values would indicate. The data indicate that gelatin is a weak polyvalent ampholyte having distant groups and that the molecule has an arborescent structure with interstices permeated by molecules of the solvent and other solutes. The size and shape probably vary with the pH.  相似文献   

5.
Chromatophore membranes from Rhodopseudomonas sphaeroides activated by light display a carotenoid band shift (phase III) that occurs in response to the electrogenic event (charge separation) in the ubiquinol-cytochrome c oxidoreductase. The rate of formation of this electrogenic event has previously been shown to be strongly dependent on the initial redox state of a bound ubiquinone species (designated Qz) associated with the oxidoreductase. When Qz is reduced (quinol form; QzH2) the electrogenic event takes place in less than 5 ms. When Qz is oxidized (quinone form; Qz) it is much slower; under these conditions the fact that it occurs has been ignored. In this report, we address this issue and describe events that lead to the generation of carotenoid band shift phase III when the total population of Qz of the chromatophore is oxidized before flash activation. The following characteristics are apparent: (1) When oxidized Qz is present before activation, the half-time of formation of carotenoid band-shift phase III is 10–20-times slower than when QzH2 is present before activation. (2) When oxidized Qz is present, the measured full extent of phase III generated by a single-turnover flash is diminished by about one-half of that observed when QzH2 is present before activation. (3) The rate of formation of the carotenoid band shift phase III when Qz is initially oxidized corresponds closely to the rate of completion of the flash-activated electron-transfer cycle. This can be seen under two different conditions: (a) as the partial reduction of cytochrome c1 + c2 (at redox potentials of 200–300 mV) or (b) as the partial reduction of flash-oxidized bacteriochlorophyll dimer, (BChl)2+ (at redox potentials above 300 mV). (4) At the higher redox potentials (above 300 mV), antimycin-sensitive proton binding shares a common, rate-limiting step with the carotenoid band shift phase III and (BChl)2+ reduction. (5) However, proton binding at redox potentials above 300 mV is not observed at all unless valinomycin (K+) is present. Thus, proton binding occurs only when the carotenoid band shift is collapsed in milliseconds, whereas, conversely, the carotenoid band shift is stably generated when proton binding is not observed. These and other observations are the basis of a reevaluation of our current views on the coupling of electron transfer and proton translocation in photosynthetic bacteria.  相似文献   

6.
Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the depth-dependent collagen fiber orientation. Nevertheless, this structure-function relationship has not yet been quantified. Here, we use confocal elastography, quantitative polarized light microscopy, and Fourier-transform infrared imaging to make same-sample measurements of the depth-dependent shear modulus, collagen fiber organization, and extracellular matrix concentration in neonatal bovine articular cartilage. We find weak correlations between the shear modulus |G| and both the collagen fiber orientation and polarization. We find a much stronger correlation between |G| and the concentration of collagen fibers. Interestingly, very small changes in collagen volume fraction vc lead to orders-of-magnitude changes in the modulus with |G| scaling as (vcv0)ξ. Such dependencies are observed in the rheology of other biopolymer networks whose structure exhibits rigidity percolation phase transitions. Along these lines, we propose that the collagen network in articular cartilage is near a percolation threshold that gives rise to these large mechanical variations and localization of strain at the tissue’s surface.  相似文献   

7.
The role of three key nitrogen regulatory genes, glnB (encoding the PII protein), glnZ (encoding the Pz protein), and glnD (encoding the GlnD protein), in regulation of poly-3-hydroxybutyrate (PHB) biosynthesis by ammonia in Azospirillum brasilense Sp7 was investigated. It was observed that glnB glnZ and glnD mutants produce substantially higher amounts of PHB than the wild type produces during the active growth phase. glnB and glnZ mutants have PHB production phenotypes similar to that of the wild type. Our results indicate that the PII-Pz system is apparently involved in nitrogen-dependent regulation of PHB biosynthesis in A. brasilense Sp7.  相似文献   

8.
9.
Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species.  相似文献   

10.
It is hypothesized that metabolic and mechanical changes in human locomotion associated with changes in speed v are constrained by two attractive strategies: $Q_{{\text{metab}}} = 1{\text{ and }}\Delta Q_{{\text{metab}}} /\Delta v = {\text{a}}$ positive definite constant. $Q_{{\text{metab}}} = \Delta {\rm E}_{\text{k}} {\text{s}}^{{\text{ - 1}}} /{\text{ml O}}_{\text{2}} {\text{s}}^{{\text{ - 1}}} $ where ΔEs?1 is the summed increments and decrements per unit time in the translational and rotational kinetic energies of the body's segments and ml O2s?1 is the rate at which chemical energy is dissipated. The expected constancy of ΔQ metab/Δv metab was derived from an extension of Ehrenfest's adiabatic hypothesis by which transformations (increases, decreases) in locomotion v can be considered as adiabatic, even though the biological conditions are nonconservative and non-rate-limited. The expected significance of Q metab=1 was derived from stability considerations of the symmetry per stride of stored and dissipated energy. An experimental evaluation was provided by collecting metabolic and mechanical measures on walking (10 subjects) and running (9 subjects) at progressively greater treadmill speeds but within the aerobic limit. Results revealed that walking was restricted to ometab ? 1 with a nonlinear trajectory in v×Q metab coordinates shaped by Q metab=1 (primarily) and the constancy of ΔQ metab/Δv. Running satisfied Q metab > 1, with a linear trajectory in v×Q metab coordinates conforming to ΔQ metab/Δv=a constant, with the constant predicted from invariants in the mechanical space v×ΔE ks?1. Results also suggested that the metabolic costs of running might be predictable from measures made in the v×ΔE ks?1 space.  相似文献   

11.
Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the depth-dependent collagen fiber orientation. Nevertheless, this structure-function relationship has not yet been quantified. Here, we use confocal elastography, quantitative polarized light microscopy, and Fourier-transform infrared imaging to make same-sample measurements of the depth-dependent shear modulus, collagen fiber organization, and extracellular matrix concentration in neonatal bovine articular cartilage. We find weak correlations between the shear modulus |G| and both the collagen fiber orientation and polarization. We find a much stronger correlation between |G| and the concentration of collagen fibers. Interestingly, very small changes in collagen volume fraction vc lead to orders-of-magnitude changes in the modulus with |G| scaling as (vcv0)ξ. Such dependencies are observed in the rheology of other biopolymer networks whose structure exhibits rigidity percolation phase transitions. Along these lines, we propose that the collagen network in articular cartilage is near a percolation threshold that gives rise to these large mechanical variations and localization of strain at the tissue’s surface.  相似文献   

12.
Integrins are cell receptors that mediate adhesion to the extracellular matrix (ECM) and regulate cell migration, a crucial process in tumor invasion. The αvβ3 integrin recognizes the arginine-glycine-aspartic acid (RGD) motif in ECM proteins and it can be antagonized by RGD-peptides, resulting in decreased cell migration and invasion. RGD-based drugs have shown disappointing results in clinical trials; however, the reasons for their lack of activity are still obscure. Aiming to contribute to a better understanding of the molecular consequences of integrin inhibition, we tested a recombinant RGD-disintegrin (DisBa-01) in two types of murine cell lines, breast tumor 4T1BM2 cells and L929 fibroblasts. Only tumor cells showed decreased motility and adhesion, as well as morphologic alterations upon DisBa-01 treatment (100 and 1000 nM). This result was attributed to the higher levels of αvβ3 integrin in 4T1BM2 cells compared to L929 fibroblasts making the former more sensitive to DisBa-01 blocking. DisBa-01 induced cell cycle arrest at the S phase in 4T1BM2 cells, but it did not induce apoptosis, which was consistent with the decrease in caspase-3, 8 and 9 expression at mRNA and protein levels. DisBa-01 increases PI3K, Beclin-1 and LC3B expression in tumor cells, indicators of autophagic induction. In conclusion, αvβ3 integrin blocking by DisBa-01 results in inhibition of adhesion and migration and in the activation of an autophagy program, allowing prolonged survival and avoiding immediate apoptotic death. These observations suggest new insights into the effects of RGD-based inhibitors considering their importance in drug development for human health.  相似文献   

13.
Uniaxial and biaxial mechanical properties of purified elastic tissue from the proximal thoracic aorta were studied to understand physiological load distributions within the arterial wall. Stress–strain behaviour was non-linear in uniaxial and inflation tests. Elastic tissue was 40% stiffer in the circumferential direction compared to axial in uniaxial tests and~100% stiffer in vessels at an axial stretch ratio of 1.2 or 1.3 and inflated to physiological pressure. Poisson’s ratio vθz averaged 0.2 and vzθ increased with circumferential stretch from ~0.2 to ~0.4. Axial stretch had little impact on circumferential behaviour. In intact (unpurified) vessels at constant length, axial forces decreased with pressure at low axial stretches but remained constant at higher stretches. Such a constant axial force is characteristic of incrementally isotropic arteries at their in vivo dimensions. In purified elastic tissue, force decreased with pressure at all axial strains, showing no trend towards isotropy. Analysis of the force–length–pressure data indicated a vessel with vθz≈0.2 would stretch axially 2–4% with the cardiac pulse yet maintain constant axial force. We compared the ability of 4 mathematical models to predict the pressure-circumferential stretch behaviour of tethered, purified elastic tissue. Models that assumed isotropy could not predict the stretch at zero pressure. The neo-Hookean model overestimated the non-linearity of the response and two non-linear models underestimated it. A model incorporating contributions from orthogonal fibres captured the non-linearity but not the zero-pressure response. Models incorporating anisotropy and non-linearity should better predict the mechanical behaviour of elastic tissue of the proximal thoracic aorta.  相似文献   

14.
Livers of rats between the 16th gestational and 100th postnatal day of age were subjected to quantitative biochemical and electron microscope, morphometric analyses. The amount of total mitochondrial protein per gram of liver remained at 34% of the adult level throughout the last 4 days of gestation but this was the period of rapid rise in the levels of cytochrome c oxidase, aspartate aminotransferase, and glutamate dehydrogenase in mitochondria; the nuclear fraction also acquired some glutamate dehydrogenase but lost most of it during postnatal development. During early postnatal life the amount of mitochondrial protein rose in parallel with the levels of cytochrome c oxidase and glutamate dehydrogenase but the upsurges of glutaminase and, later, of ornithine aminotransferase were accompanied by relatively little change in total mitochondrial protein. The surface area of rough endoplasmic reticulum per unit volume of hepatocyte cytoplasm (SvRER) did not change significantly throughout the period of development studied. From the 16th day of gestation to term the surface area of smooth ER (SvSER), the volume occupied by mitochondria (VvMT) and their number (NvMT) remained at 30, 66, and 45% of their adult values, respectively. VvMT and NvMT attained their maximal levels by the 2nd postnatal day and SvSER between days 2 and 12. Mitochondria of adult liver are thus smaller and contain more protein per unit volume than do those of fetal liver. After the 12th postnatal day, hepatocytes treble their size; they acquire more cytoplasm with additional enzymes but without further change in organelle concentration. The data reveal several distinct phases in the differentiation of hepatocytes. Each phase can be characterized by the extent to which the quantity and composition of various subcellular compartments evolve.  相似文献   

15.
It is shown that relativistic electron current can propagate across the magnetic field B 0 over a distance d much larger than the electron gyroradius, r 0 ? m e v z c/(eB 0) ? d. This current is driven by the Hall electric field, which is generated on a spatial scale equal to the magnetic Debye radius r B = B 0/(4πen e) and causes the electrons to drift in crossed electric and magnetic fields. For a plane equilibrium current configuration, analytic profiles of the electron velocity and electron density are calculated and the electric and magnetic fields are determined. The results obtained are used to explain electron leakages in magnetically insulated transmission lines filled with a plasma expanding from the electrodes. Equations describing an equilibrium configuration of the ions and electrons that drift simultaneously across a strong magnetic field are derived.  相似文献   

16.
On transition bias in mitochondrial genes of pocket gophers   总被引:1,自引:0,他引:1  
The relative contribution of mutation and purifying selection to transition bias has not been quantitatively assessed in mitochondrial protein genes. The observed transition/transversion (s/v) ratio is (μ s P s)/(μ v P v), where μ s and μ v denote mutation rate of transitions and transversions, respectively, andP s andP v denote fixation probabilities of transitions and transversions, respectively. Because selection against synonymous transitions can be assumed to be roughly equal to that against synonymous transversions,P s/Pv ≈ 1 at fourfold degenerate sites, so that thes/v ratio at fourfold degenerate sites is approximately μ s v , which is a measure of mutational contribution to transition bias. Similarly, thes/v ratio at nondegenerate sites is also an estimate of μ s v if we assume that selection against nonsynonymous transitions is roughly equal to that against nonsynonymous transversions. In two mitochondrial genes, cytochrome oxidase subunit I (COI) and cytochromeb (cyt-b) in pocket gophers, thes/v ratio is about two at nondegenerate and fourfold degenerate sites for both the COI and the cyt-b genes. This implies that mutation contribution to transition bias is relatively small. In contrast, thes/v ratio is much greater at twofold degenerate sites, being 48 for COI and 40 for cyt-b. Given that the μ s v ratio is about 2, theP s/Pv ratio at twofold degenerate sites must be on the order of 20 or greater. This suggests a great effect of purifying selection on transition bias in mitochondrial protein genes because transitions are synonymous and transversions are nonsynonymous at twofold degenerate sites in mammalian mitochondrial genes. We also found that nonsynonymous mutations at twofold degenerate sites are more neutral than nonsynonymous mutations at nondegenerate sites, and that the COI gene is subject to stronger purifying selection than is the cyt-b gene. A model is presented to integrate the effect of purifying selection, codon bias, DNA repair and GC content ons/v ratio of protein-coding genes. Correspondence to: X. Xia  相似文献   

17.
A method for separation and detection of major and minor components in complex mixtures has been developed, utilising two-dimensional high-performance liquid chromatography (2D-HPLC) combined with electrospray ionisation ion-trap multiple-stage mass spectrometry (ESI-ITMSn). Chromatographic conditions were matched with mass spectrometric detection to maximise the number of components that could be separated. The described procedure has proven useful to discern several hundreds of saponin components when applied to Quillaja saponaria Molina bark extracts. The discrimination of each saponin component relies on the fact that three coordinates (x, y, z) for each component can be derived from the retention time of the two chromatographic steps (x, y) and the m/z-values from the multiple-stage mass spectrometry (zn, n = 1, 2, …). Thus an improved graphical representation was obtained by combining retention times from the two-stage separation with +MS1 (z1) and the additional structural information from the second mass stage +MS2 (z2, z3) corresponding to the main fragment ions. By this approach three-dimensional plots can be made that reveal both the chromatographic and structural properties of a specific mixture which can be useful in fingerprinting of complex mixtures.  相似文献   

18.

Purpose

Assessment of cerebral ischemia often employs dynamic susceptibility contrast enhanced magnetic resonance imaging (DSC-MRI) with evaluation of various peak enhancement time parameters. All of these parameters use a single time threshold to judge the maximum tolerable peak enhancement delay that is supposed to reliably differentiate sufficient from critical perfusion. As the validity of this single threshold approach still remains unclear, in this study, (1) the definition of a threshold on an individual patient-basis, nevertheless (2) preserving the comparability of the data, was investigated.

Methods

The histogram of time-to-peak (TTP) values derived from DSC-MRI, the so-called TTP-distribution curve (TDC), was modeled using a double-Gaussian model in 61 patients without severe cerebrovascular disease. Particular model-based zf-scores were used to describe the arterial, parenchymal and venous bolus-transit phase as time intervals Ia,p,v. Their durations (delta Ia,p,v), were then considered as maximum TTP-delays of each phase.

Results

Mean-R2 for the model-fit was 0.967. Based on the generic zf-scores the proposed bolus transit phases could be differentiated. The Ip-interval reliably depicted the parenchymal bolus-transit phase with durations of 3.4 s–10.1 s (median = 4.3s), where an increase with age was noted (∼30 ms/year).

Conclusion

Individual threshold-adjustment seems rational since regular bolus-transit durations in brain parenchyma obtained from the TDC overlap considerably with recommended critical TTP-thresholds of 4 s–8 s. The parenchymal transit time derived from the proposed model may be utilized to individually correct TTP-thresholds, thereby potentially improving the detection of critical perfusion.  相似文献   

19.
A simple offline LC–MS/MS method for the quantification of sitagliptin in human plasma is described. Samples are prepared using protein precipitation. Filtration of the supernatants through a Hybrid-SPE-PPT plate was found to be necessary to reduce ionization suppression caused by co-elution of phospholipids with sitagliptin. The sitagliptin and its stable isotope labeled internal standard (IS) were chromatographed under hydrophilic interaction chromatography conditions on a Waters Atlantis HILIC Silica column (2.1 mm × 50 mm, 3 μm) using a mobile phase of ACN/H2O (80/20, v/v) containing 10 mM NH4Ac (pH 4.7). The sample drying after protein precipitation due to high organic content in the sample is not necessary, because HILIC column was used. The analytes were detected with a tandem mass spectrometer employing a turbo ion spray (TIS) interface in positive ionization mode. The multiple reaction monitoring (MRM) transitions were m/z 408 → 235 for sitagliptin and m/z 412 → 239 for IS. The lower limit of quantitation (LLOQ) for this method is 1 ng/mL when 100 μL of plasma is processed. The linear calibration range is 1–1000 ng/mL for sitagliptin. Intra-day precision and accuracy were assessed based on the analysis of six sets of calibration standards prepared in six lots of human control plasma. Intra-day precision (RSD%, n = 6) ranged from 1.2% to 6.1% and the intra-day accuracy ranged from 97.6% to 103% of nominal values.  相似文献   

20.
The solubilities of bovine serum albumin and its two cyanogen bromide fragments comprising domain I and II+III of the protein in ammonium sulphate solution were studied at different pH and temperature and the salting-out parameters Ks and β were determined for the three proteins. The values of Ks and β obtained for the intact albumin at different pH were atypical of other globular proteins and were explained in terms of N-F transition and pH induced unfolding of the protein. The salting-out behaviour of the two fragments was, however, found to be significantly different from that of their parent molecule. In contrast to bovine serum albumin, the aqueous solubilities of the two fragments were highly dependent on temperature. Similarly, pH dependence of β for the two fragments was also different since it acquired a minimum value at about pH 4.0 as against its monotonic decrease with pH observed in intact albumin below pH 5.0. Anomalous salting-out behaviour of the two cyanogen bromide fragments has been attributed to the possible conformational changes that might occur during the course of their preparation under relatively harsher chemical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号