首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses.  相似文献   

2.
Phylogenetic relationships among higher clades of pulmonate gastropods are reconstructed based on a data set including one nuclear marker (complete ribosomal 18S) and two mitochondrial markers (partial ribosomal 16S and Cytochrome oxidase I) for a total of 96 species. Sequences for 66 of these species are new to science, with a special emphasis on sampling the Ellobiidae, Onchidiidae, and Veronicellidae. Important results include the monophyly of Systellommatophora (Onchidiidae and Veronicellidae) as well as the monophyly of Ellobiidae (including Trimusculus, Otina, and Smeagol). Relationships within Ellobiidae, Onchidiidae, and Veronicellidae are evaluated here for the first time using molecular data. Present results are compared with those from the recent literature, and the current knowledge of phylogenetic relationships among pulmonate gastropods is reviewed: despite many efforts, deep nodes are still uncertain. Identification uncertainties about early fossils of pulmonates are reviewed. Impacts of those phylogenetic and fossil record uncertainties on our understanding of the macro-evolutionary history of pulmonates, especially transitions between aquatic and terrestrial habitats, are discussed.  相似文献   

3.
Heteroptera are among the most diverse hemimetabolous insects. Seven infraorders have been recognized within this suborder of Hemiptera. Apart from the well‐established sister‐group relationship between Cimicomorpha and Pentatomomorpha (= Terheteroptera), the two terminal lineages, the relationships among the other five infraorders are still controversial, of which three (Gerromorpha, Nepomorpha and Leptopodomorpha) are intimately connected to aquatic environments. However, the various and often conflicting available phylogeny hypotheses do not offer a clear background for a connection between diversification and palaeoenvironments. In this study, a molecular data set representing 79 taxa and 10 149 homologous sites is used to infer the phylogenetic relationships within Heteroptera. Bayesian inference, maximum‐likelihood and maximum parsimony analyses were employed. The results of phylogenetic inferences largely confirm the widely accepted phylogenetic context. Estimation of the divergence time based on the phylogenetic results revealed that Gerromorpha, Nepomorpha and Leptopodomorpha originated successively during the period from the Late Permian to Early Triassic (269–246 Ma). This timescale is consistent with the origin and radiation time of various aquatic holometabolans. Our results indicate that the aquatic and semi‐aquatic true bugs evolved under environmental conditions of high air temperature and humidity in an evolutionary scenario similar to that of the aquatic holometabolans.  相似文献   

4.
The poorly known Haloragaceae R. Br. (Saxifragales) are highly diverse in habit (small trees to submerged aquatics) and labile in floral merosity (2-4), both uncommon among the core eudicots. This family has a cosmopolitan distribution, but taxonomic diversity is concentrated in Australia. An explicit phylogenetic approach has not previously been utilized to examine relationships or character evolution in this family. We used molecular evidence from nrDNA ITS and cpDNA trnK and matK regions under both Bayesian and parsimony analyses to address phylogenetic relationships. Combined molecular analyses defined a monophyletic Haloragaceae with the woody genera (Haloragodendron, Glischrocaryon) sister to the rest. Relationships among many genera were well resolved, with genera as currently delimited generally well supported, although there were notable exceptions; a new genus (Trihaloragis) is recognized, and the aquatic genus Meionectes is again distinct from Haloragis. Three new species combinations are also recognized. There are multiple (two or three) origins of the submerged aquatic habit in the family and potentially an intermediate reversal to the terrestrial habit, neither previously demonstrated in a core eudicot family using an explicit phylogenetic hypothesis. Ancestral character analyses suggest two origins of trimerous flowers and multiple reductions to dimerous flowers throughout Haloragaceae.  相似文献   

5.
Unrelated clades of aquatic tetrapod have evolved a similar range of skull shapes, varying from longirostrine (elongate and narrow rostrum) to brevirostrine (short rostrum). However, it is unclear which aspects of organismal performance are associated with this convergence in the range of skull shapes. Furthermore, it is not known how fundamental anatomical differences between groups influence these relationships. Here we address this by examining the load bearing capabilities of the skulls of two of the most diverse groups of living aquatic tetrapod: crocodilians and odontocetes. We use finite element analysis to examine the abilities of different cranial morphologies to resist a range of biologically relevant feeding loads including biting, shaking and twisting. The results allow for form/function relationships to be compared and contrasted between the two groups. We find that cranial shape has similar influences on performance during biting, shaking or twisting load cases at the anterior tooth positions, e.g. brevirostrine species experienced less strain than longirostrine species. The pattern of this form/function relationship is similar for both crocodilians and odontocetes, despite their fundamentally different anatomies. However, when loading teeth at the posterior end or middle of the tooth row the results do not follow the same pattern. Behavioural differences in bite location plays a key role in determining functional abilities in aquatic tetrapod taxa.  相似文献   

6.
A 2,256-bp sequence of the mitochondrial genome of a lepidopteran (Spodoptera frugiperda) contains tRNAs for valine and leucine, the 16S rRNA, and three-quarters of the ND-1 presumptive protein-coding gene. A 64-bp stretch of unknown function was located between the rRNA and leucine tRNA. Sequence divergence in the 16S rRNA obtained from alignment with published insect sequences is consistent with phylogenetic hypotheses, in that Diptera and Lepidoptera are more closely related to each other (24% sequence divergence) than either is to Hymenoptera (31%). Within the ND-1 gene, sequences for four additional Lepidoptera were generated for a 314-bp region and contrasted with published sequences for the locust and Drosophila. Sequence divergence in this region was consistent with accepted phylogenetic relationships, but results of parsimony analyses were not. Cladograms consistently recovered accepted higher level relationships (monophyly of Lepidoptera), despite high homoplasy, but were unable to resolve superfamily and family relationships within Lepidoptera, regardless of the outgroup or character subset analyzed. Character analysis indicated that homoplasy was decreased at higher levels when first- and second-codon sites were used exclusively. At the lowest level (families), resolution was enhanced by inclusion of third-codon sites. Inability of molecular data to recover a well-established phylogeny may be rectified by additional characters or taxa, but it is clear that homoplasy is sufficiently high to caution against the acceptance of relationships generated with this molecular region that are not extremely robust.  相似文献   

7.
We present here the first comparative analysis at the population level between Restriction Fragment Length Polymorphism (RFLP) and control region sequence polymorphism in a large and homogeneous Senegalese Mandenka sample. Eleven RFLP haplotypes and 60 different sequences are found in 119 individuals, revealing that a very high level of mtDNA diversity can be maintained in a small population. A sequence neighbor- joining tree and an analysis of molecular variance show that sequences associated with a given restriction haplotype are evolutionarily highly correlated: sequencing generally leads to the subtyping of RFLP haplotypes. Evolutionary relationships among RFLP haplotypes inferred from restriction site differences are in good agreement with those inferred from sequence data. A single difference is observed and is likely due to a single restriction homoplasy having occurred in the control region. Selective neutrality tests on both RFLP and sequence data accept the hypotheses of mtDNA neutrality and population equilibrium. The deep coalescence times (exceeding 50,000 yr) of sequences associated with the two most frequent restriction haplotypes confirm that the Niokolo Mandenka population has not passed through a recent bottleneck and that gene flow is maintained among West African populations despite ethnic differences.   相似文献   

8.
The cloning of a putative growth hormone receptor (GH-R) cDNA has opened new approaches for the understanding of the molecular basis of GH insensitivity in humans. This molecule belongs to a new class of transmembrane receptors including prolactin, granulocyte-macrophage colony stimulating factor, erythropoietin and some interleukin receptors. Although the domains responsible for signal transduction have not yet been identified, the molecular study of a GH-resistance syndrome described by Laron et al. should provide insight into the structure-function relationships of the GH-R and related receptors. This autosomal recessive disorder is characterized by very low serum levels of Insulin-Like Growth Factor I (IGF-I), despite increased secretion of GH with normal activity. Two approaches can be used to test the involvement of the GH-R in this syndrome. The first one, which is indirect, is performed through linkage analysis between GH-R and Laron phenotype; this allowed us to incriminate the GR-R gene in this syndrome. The second approach consists in the identification of molecular defects in the GH-R gene of patients with Laron syndrome; this allowed the detection of a partial gene deletion and different point mutations. The short stature of the Pygmee population could be related to the Laron syndrome because individuals from this population are also resistant to GH therapy. Therefore, it seems interesting to search for molecular variations of the GH-R gene in this population. Nevertheless, preliminary results indicate that the GH-R gene is not directly involved in this particular short stature condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The Notothenioidei dominates the fish fauna of the Antarctic in both biomass and diversity. This clade exhibits adaptations related to metabolic function and freezing avoidance in the subzero Antarctic waters, and is characterized by a high degree of morphological and ecological diversity. Investigating the macroevolutionary processes that may have contributed to the radiation of notothenioid fishes requires a well-resolved phylogenetic hypothesis. To date published molecular and morphological hypotheses of notothenioids are largely congruent, however, there are some areas of significant disagreement regarding higher-level relationships. Also, there are critical areas of the notothenioid phylogeny that are unresolved in both molecular and morphological phylogenetic analyses. Previous molecular phylogenetic analyses of notothenioids using partial mtDNA 12S and 16S rRNA sequence data have resulted in limited phylogenetic resolution and relatively low node support. One particularly controversial result from these analyses is the paraphyly of the Nototheniidae, the most diverse family in the Notothenioidei. It is unclear if the phylogenetic results from the 12S and 16S partial gene sequence dataset are due to limited character sampling, or if they reflect patterns of evolutionary diversification in notothenioids. We sequenced the complete mtDNA 16S rRNA gene for 43 notothenioid species, the largest sampling to-date from all eight taxonomically recognized families. Phylogenetic analyses using both maximum parsimony and maximum likelihood resulted in well-resolved trees with most nodes supported with high bootstrap pseudoreplicate scores and significant Bayesian posterior probabilities. In all analyses the Nototheniidae was monophyletic. Shimodaira–Hasegawa tests were able to reject two hypotheses that resulted from prior morphological analyses. However, despite substantial resolution and node support in the 16S rRNA trees, several phylogenetic hypotheses among closely related species and clades were not rejected. The inability to reject particular hypotheses among species in apical clades is likely due to the lower rate of nucleotide substitution in mtDNA rRNA genes relative to protein coding regions. Nevertheless, with the most extensive notothenioid taxon sampling to date, and the much greater phylogenetic resolution offered by the complete 16S rRNA sequences over the commonly used partial 12S and 16S gene dataset, it would be advantageous for future molecular investigations of notothenioid phylogenetics to utilize at the minimum the complete gene 16S rRNA dataset.  相似文献   

10.
Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences   总被引:9,自引:0,他引:9  
Several families in the beetle suborder Adephaga have an aquatic life style and are commonly grouped in the "Hydradephaga," but their monophyly is contentious and relationships between and within these families are poorly understood. Here we present full-length 18S rRNA sequence for 84 species of Hydradephaga, including representatives of most major groups down to the tribal level, and a total of 68 species of the largest family, Dytiscidae. Using a direct optimization method for the alignment of length-variable regions, the preferred tree topology was obtained when the cost of gaps and the cost of nucleotide changes were equal, and three hypervariable regions of 18S rRNA were downweighted by a factor of five. Confirming recent molecular studies, the Hydradephaga were found to be monophyletic, indicating a single colonization of the aquatic medium. The most basal group within Hydradephaga is Gyrinidae, followed in a comb-like arrangement by families Haliplidae, Noteridae, Amphizoidae, and Hygrobiidae plus Dytiscidae. Under most alignment parameters, Hygrobiidae is placed amid Dytiscidae in an unstable position, suggesting a possible data artifact. Basal relationships within Dytiscidae are not well established, nor is the monophyly of subfamilies Hydroporinae and Colymbetinae. In contrast, relationships at the genus level appear generally well supported. Despite the great differences in the rates of change and the significant incongruence of the phylogenetic signal in conserved vs hypervariable regions of the 18S rRNA gene, both contribute to establish relationships at all taxonomic levels.  相似文献   

11.
Roe AD  Sperling FA 《Molecular ecology》2007,16(17):3617-3633
Accurate delimitation of species boundaries is especially important in cryptic taxa where one or more character sources are uninformative or are in conflict. Rather than relying on a single marker to delimit species, integrative taxonomy uses multiple lines of evidence such as molecular, morphological, behavioural and geographic characters to test species limits. We examine the effectiveness of this approach by testing the delimitation of two cryptic Nearctic species of Dioryctria (Lepidoptera: Pyralidae) using three independent molecular markers [cytochrome c oxidase I (COI), second internal transcribed spacer unit (ITS2), and elongation factor 1alpha (EF1alpha)], forewing variation and larval host plant association. Although mitochondrial DNA (mtDNA) haplotypes do not form reciprocally monophyletic clades, restricted gene flow between COI haplotype groups, and concordance with ITS2 genotypes, forewing variation and host plant associations support delimitation of two Nearctic species: eastern Dioryctria reniculelloides and western Dioryctria pseudotsugella. Conversely, EF1alpha genotype variation was incongruent with the two previous markers. A case of discordance between COI and ITS2 was detected, suggesting either introgression due to hybridization or retained ancestral polymorphism due to incomplete coalescence. This study is consistent with other similar literature where molecular loci in closely related species progress from shared to fixed haplotypes/alleles, and from polyphyletic to reciprocally monophyletic relationships, although loci may vary in these characteristics despite maintenance of genomic integrity between distinct species. In particular, mtDNA in other studies generally showed a lower rate of fixation of differences than did X-linked or autosomal loci, reinforcing the need to use an integrative approach for delimiting species.  相似文献   

12.
Biology and systematics of heterokont and haptophyte algae   总被引:1,自引:0,他引:1  
In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classified into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed significantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heterokont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas).  相似文献   

13.
With about 500 known species worldwide, the large brachiopods are a relatively small group of primitive crustaceans. With few exceptions they live in temporary aquatic systems that are most abundant in arid and semi arid areas. As many regions remain unexplored and as especially the number of species in clam shrimps and tadpole shrimps is underestimated due to difficult identification, the species list will increase with future surveys. The Branchiopoda are monophyletic, but inter-ordinal relationships, as well as many evolutionary relationships at lower taxonomic levels are still unclear. Ongoing molecular studies will more accurately depict species diversity and phylogenetic patterns. With the exception of some anostracan families, most families are not restricted to the northern or southern hemisphere or specific zoogeographical regions. Large branchiopods are used for the assessment of the quality and function of temporary wetlands. Due to the reduction in number and quality of temporary wetlands, several species became endangered and are red listed by the IUCN. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Wicht B  Petrini O  Jermini M  Gessler C  Broggini GA 《Mycologia》2012,104(5):1036-1045
Guignardia bidwellii is the etiological agent of grape black rot, a disease affecting Vitis and other Vitaceae that can cause heavy crop losses in vineyards. Its identification is based mainly on morphological characters and the symptoms on plants but, due to their variability, they may be difficult to interpret to reliably distinguish the pathogen to species. To date, despite the economic importance of G. bidwellii, no molecular investigations have been carried out on Vitis isolates and few sequence data are available for cultures derived from ornamental host plants. We analyzed samples of G. bidwellii collected from grapevine cultivars and ornamental plants of various geographic origins by morphological, molecular and proteomic techniques, including ITS1-ITS2 regions and calmodulin gene sequencing, as well as matrix-assisted laser desorption/ionization analysis by time-of-flight mass spectrometry (MALDI-TOF MS). This polyphasic approach allowed assessing the phylogenetic relationships among the different isolates and suggested the existence of two distinct species. The advantages of a polyphasic approach for the identification of G. bidwellii are highlighted.  相似文献   

15.
In this study, the small subunit (18S) ribosomal DNA gene from an aurantiactinomyxon form of unknown taxonomic position (A1) and from its aquatic oligochaete host (Tubifex ignotus) were characterized. Molecular sequence information on A1 was obtained to allow comparisons of this gene with known sequences from known myxosporean forms, and therefore to investigate possible relationships between this organism and its alternate myxosporean stage. Sequence data for the oligochaete host, together with morphological features, will allow reliable identification of this species in the future. Sequence data derived from the 18S DNA gene and data from other related or non-related organisms were analyzed and used to construct a phylogenetic tree. Phylogenetic studies provided an insight into the taxonomic position of A1. Sequence similarities within the 18S rDNA A1 gene and compared organisms indicated that A1 was most closely related to members of the sub-order Variisporina (Myxidium lieberkuehni [Ml] and Sphaerospora oncorhynchi [So]). Clustering of the 3 organisms in the same branch was well supported by high bootstrap values (81%). A1 showed higher similarities with sequences of Ml (approximately 80%) than with So (approximately 79%). Myxosporean sequence analysis indicated that phylogenetic arrangements do not support traditional classification based on morphological criteria of the spores, but rather support arrangement by tissue location. Marine actinosporeans Triactinomyxon sp. and Tetraspora discoidea were found to be associated with Platysporinid myxosporeans, supporting previous findings. In this study, 18S rDNA sequence data are generated for first time for the aquatic oligochaete T. ignotus. Phylogenetic 18S rDNA gene analyses performed with T. ignotus support and confirm existing morphological and molecular phylogenetic studies. Paraphyly of the Tubificidae family was noticed.  相似文献   

16.
Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm‐tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years’ winter warming. The warming treatments increased winter soil temperatures by 5–6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q10) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat‐spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil‐atmosphere C exchange.  相似文献   

17.
Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively little phylogenetic attention. Our results suggest that the genus Echinorhinus is not a squaliform, but rather related to the saw sharks, a hypothesis that might be supported by both groups sharing 'spiny' snouts. In sum, our results offer the most detailed species-level phylogeny of sharks to date and a tool for comparative analyses.  相似文献   

18.
Pal D 《Bioinformation》2006,1(3):97-98
The effort of function annotation does not merely involve associating a gene with some structured vocabulary that describes action. Rather the details of the actions, the components of the actions, the larger context of the actions are important issues that are of direct relevance, because they help understand the biological system to which the gene/protein belongs. Currently Gene Ontology (GO) Consortium offers the most comprehensive sets of relationships to describe gene/protein activity. However, its choice to segregate gene ontology to subdomains of molecular function, biological process and cellular component is creating significant limitations in terms of future scope of use. If we are to understand biology in its total complexity, comprehensive ontologies in larger biological domains are essential. A vigorous discussion on this topic is necessary for the larger benefit of the biological community. I highlight this point because larger-bio-domain ontologies cannot be simply created by integrating subdomain ontologies. Relationships in larger bio-domain-ontologies are more complex due to larger size of the system and are therefore more labor intensive to create. The current limitations of GO will be a handicap in derivation of more complex relationships from the high throughput biology data.  相似文献   

19.
Mountains harbor rich biodiversity and high levels of endemism, particularly due to changes in environmental conditions over short spatial distances, which affects species distribution and composition. Studies on mountain ecosystems are increasingly needed, as mountains are highly threatened despite providing ecosystem services, such as water supply for half of the human population. We aimed to understand the patterns and drivers of alpha and beta diversities of aquatic invertebrates in headwater streams along an altitudinal gradient in the second largest South American mountain range, the Espinhaço mountains. Headwater streams were selected at each 100 m of elevation along an altitudinal gradient ranging from 800 to 1400 m asl, where three substrate types per stream were sampled: leaf litter, gravel, and cobbles. Environmental variables were sampled to represent local riparian canopy cover, instream physical habitat, water quality, climatic data, and land use. Generalized linear models and mixed models were used to test relationships between altitude and the richness and abundance of invertebrates and to assess the influence of environmental variables on the same metrics. Patterns of spatial variation in aquatic invertebrate assemblages along the altitudinal gradient were assessed using multiplicative beta diversity partitioning. The richness and abundance of aquatic invertebrates decreased with increasing altitude, whereas beta diversity increased with increasing altitude. Significant differences in assemblage composition and in relative abundance of invertebrates were observed for both substrates and altitude. We thus show that the high regional beta diversity in aquatic ecosystems in the studied site is due to the high turnover among areas. Abstract in Portuguese is available with online material.  相似文献   

20.
Gastrotricha is a species-rich phylum of microscopical animals that contains two main orders, Chaetonotida and Macrodasyida. Gastrotrichs are important members of the aquatic environment and significant players in the study of animal evolution. In spite of their ecological and evolutionary importance, their internal relationships are not yet well understood. We have produced new sequences for the 18S rDNA gene to improve both the quality and quantity of taxon sampling for the gastrotrichs. Our phylogeny recovers the monophyly of the two main Gastrotricha clades, in contrast to recent studies with similar sampling, but in agreement with morphology based analyses. However, our topology is not able to resolve the first branches of the macrodasyidans or settle the position of the puzzling Neodasys, a controversial genus classified as a chaetonotidan on morphological grounds but placed within macrodasyidans by molecular studies. This analysis is the most exhaustive molecular phylogeny of the phylum to date, and significantly increases our knowledge of gastrotrich evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号