首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The advance in medical technology and healthcare has dramatically improved the average human lifespan. One of the consequences for longevity is the high prevalence of aging-related chronic disorders such as cardiovascular diseases, cancer and metabolic abnormalities. As the composition of aging population is raising in western countries, heart failure remains the number one cause of death with a more severe impact in the elderly. Obesity and aging are the most critical risk factors for increased susceptibility to heart failure in developing and developed countries. Numerous population-based and experimental data have depicted a close relationship between the age-related diseases and obesity. There is an overall agreement that obesity is causally linked to the development of cardiovascular disorders and severe premature cardiac aging. Accumulating evidence indicates that autophagy plays an important role in obesity, cardiac aging and diseases. In this review, we will focus on the role of autophagy in obesity-related cardiac aging and diseases, and how it regulates age-dependent changes in the heart.  相似文献   

3.
Systolic and diastolic dysfunction of the left ventricle (LV) is a hallmark of most cardiac diseases. In vivo assessment of heart function in animal models, particularly mice, is essential to refining our understanding of cardiovascular disease processes. Ultrasound echocardiography has emerged as a powerful, noninvasive tool to serially monitor cardiac performance and map the progression of heart dysfunction in murine injury models. This review covers current applications of small animal echocardiography, as well as emerging technologies that improve evaluation of LV function. In particular, we describe speckle-tracking imaging-based regional LV analysis, a recent advancement in murine echocardiography with proven clinical utility. This sensitive measure enables an early detection of subtle myocardial defects before global dysfunction in genetically engineered and rodent surgical injury models. Novel visualization technologies that allow in-depth phenotypic assessment of small animal models, including perfusion imaging and fetal echocardiography, are also discussed. As imaging capabilities continue to improve, murine echocardiography will remain a critical component of the investigator's armamentarium in translating animal data to enhanced clinical treatment of cardiovascular diseases.  相似文献   

4.
Effect of exercise on cardiac muscle performance in aged rats   总被引:1,自引:0,他引:1  
Most investigations of a direct impact of chronic physical conditioning on cardiac muscle physiology and biochemistry have utilized relatively young animal models. Some, but not all, of these studies have demonstrated beneficial effect of relatively modest magnitude. With advancing age, i.e., with the onset of senescence, characteristic changes in many aspects of cardiac physiology and biochemistry in rodent models have been noted to occur. In general, these consist of a reduction in the kinetics of events that determine myocardial excitation-contraction relaxation and energetics. Recently it has been shown that several of these apparent age-related functional declines can be reversed by chronic physical conditioning, which in some instances have no effect on cardiac muscle of younger animals. This suggests that the relative efficacy of chronic exercise to modulate myocardial performance may, in part, be determined by the level of function present before the intervention, as is the case for other modulators of cardiac muscle function. In addition, that apparent age-related deficits in myocardial function can be reversed by conditioning suggests an interaction between life-style and aging.  相似文献   

5.
Cardiac injury induces myocardial expression of the thyroid hormone inactivating type 3 deiodinase (D3), which in turn dampens local thyroid hormone signaling. Here, we show that the D3 gene (Dio3) is a tissue-specific imprinted gene in the heart, and thus, heterozygous D3 knockout (HtzD3KO) mice constitute a model of cardiac D3 inactivation in an otherwise systemically euthyroid animal. HtzD3KO newborns have normal hearts but later develop restrictive cardiomyopathy due to cardiac-specific increase in thyroid hormone signaling, including myocardial fibrosis, impaired myocardial contractility, and diastolic dysfunction. In wild-type littermates, treatment with isoproterenol-induced myocardial D3 activity and an increase in the left ventricular volumes, typical of cardiac remodeling and dilatation. Remarkably, isoproterenol-treated HtzD3KO mice experienced a further decrease in left ventricular volumes with worsening of the diastolic dysfunction and the restrictive cardiomyopathy, resulting in congestive heart failure and increased mortality. These findings reveal crucial roles for Dio3 in heart function and remodeling, which may have pathophysiologic implications for human restrictive cardiomyopathy.  相似文献   

6.
Patients with type 2 diabetes (T2D) are at increased risk for cardiovascular diseases including diabetic cardiomyopathy, which is ventricular dysfunction independent of underlying coronary artery disease and/or hypertension. With numerous advancements in our ability to detect ventricular dysfunction, as well as the molecular mechanisms contributing to ventricular dysfunction in diabetic patients, it is now appreciated that diabetic cardiomyopathy is becoming more prevalent in our population. In spite of these advancements, we do not have any specific therapies currently approved for treating this condition. As obesity increases the risk for both T2D and cardiovascular disease, it has been postulated that obesity-mediated alterations in myocardial lipid metabolism are critical to the pathophysiology of diabetic cardiomyopathy. Indeed, animal studies have provided strong evidence that alterations in either myocardial fatty acid uptake or fatty acid β-oxidation lead to the accumulation of various lipid intermediates including triacylglycerol, diacylglycerol, ceramide, long-chain acyl CoA, acylcarnitine, and many others that are tightly linked to the progression of ventricular dysfunction. We review herein why lipid intermediates accumulate in the heart during obesity and/or T2D, with a focus on which of these various lipid intermediates may be responsible for cardiac lipotoxicity, and whether findings in animal models are relevant to humans. An improved understanding of how these lipid intermediates accumulate in the heart and how they produce cardiac toxicity may lead to the discovery of novel targets to pursue for the treatment of human diabetic cardiomyopathy. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

7.
Diabetes mellitus and cardiac function   总被引:18,自引:0,他引:18  
Cardiovascular complications are the most common causes of morbidity and mortality in diabetic patients. Coronary atherosclerosis is enhanced in diabetics, whereas myocardial infarction represents 20% of deaths of diabetic subjects. Furthermore, re-infarction and heart failure are more common in the diabetics. Diabetic cardiomyopathy is characterized by an early diastolic dysfunction and a later systolic one, with intracellular retention of calcium and sodium and loss of potassium. In addition, diabetes mellitus accelerates the development of left ventricular hypertrophy in hypertensive patients and increases cardiovascular mortality and morbidity. Treating the cardiovascular problems in diabetics must be undertaken with caution. Special consideration must be given with respect to the ionic and metabolic changes associated with diabetes. For example, although ACE inhibitors and calcium channel blockers are suitable agents, potassium channel openers cause myocardial preconditioning and decrease the infarct size in animal models, but they inhibit the insulin release after glucose administration in healthy subjects. Furthermore, potassium channel blockers abolish myocardial preconditioning and increase infarct size in animal models, but they protect the heart from the fatal arrhytmias induced by ischemia and reperfusion which may be important in diabetes. For example, diabetic peripheral neuropathy usually presents with silent ischemia and infarction. Mechanistically, parasympathetic cardiac nerve dysfunction, expressed as increased resting heart rate and decreased respiratory variation in heart rate, is more frequent than the sympathetic cardiac nerve dysfunction expressed as a decrease in the heart rate rise during standing.  相似文献   

8.
The animal models of myocardial injury induced by systemic β-adrenergic receptor agonist administration represent an experimental approach of persisting interest. These models were found useful especially for studies of structural and functional adaptation of myocardium during the progression of cardiac adaptive response towards maladaptive hypertrophy and insufficiency. The pathological alterations induced by isoproterenol (ISO) do not develop evenly. The ISO models may contribute effectively to understanding of pathologies in signal transduction, energetics, excitability and contractility that may contribute concomitantly to cardiac dysfunction and heart failure. In this minireview we focused on the alterations in general characteristics and heart function as well as on the morphological changes of cardiomyocytes developed during ISO administration. The morphological alterations within the cellular macro- and microdomains correspond to the electrical remodelling and contractile dysfunction of ventricular myocardium that could be used to identify pathological changes ranging from hypertrophy to failing heart.  相似文献   

9.
Cardiac arrest results in significant mortality after initial resuscitation due in most cases to ischemia-reperfusion induced brain injury and to a lesser degree myocardial dysfunction. Nitrite has previously been shown to protect against reperfusion injury in animal models of focal cerebral and heart ischemia. Nitrite therapy after murine cardiac arrest improved 22 h survival through improvements in myocardial contractility. These improvements accompanied transient mitochondrial inhibition which reduced oxidative injury to the heart. Based on preliminary evidence that nitrite may also protect against ischemic brain injury, we sought to test this hypothesis in a rat model of asphyxia cardiac arrest with prolonged survival (7d). Cardiac arrest resulted in hippocampal CA1 delayed neuronal death well characterized in this and other cardiac arrest models. Nitrite therapy did not alter post-arrest hemodynamics but did result in significant (75%) increases in CA1 neuron survival. This was associated with increases in hippocampal nitrite and S-nitrosothiol levels but not cGMP shortly after therapy. Mitochondrial function 1h after resuscitation trended towards improvement with nitrite therapy. Based on promising preclinical data, the first ever phase I trial of nitrite infusions in human cardiac arrest survivors has been undertaken. We present preliminary data showing low dose nitrite infusion did not result in hypotension or cause methemoglobinemia. Nitrite thus appears safe and effective for clinical translation as a promising therapy against cardiac arrest mediated heart and brain injury.  相似文献   

10.
Aging is associated with a decline in heart function across the tissue, cellular, and molecular levels. The risk of cardiovascular disease grows significantly over time, and as developed countries continue to see an increase in lifespan, the cost of cardiovascular healthcare for the elderly will undoubtedly rise. The molecular basis for cardiac function deterioration with age is multifaceted and not entirely clear, and there is a limit to what investigations can be performed on human subjects or mammalian models. Drosophila melanogaster has emerged as a useful model organism for studying aging in a short timeframe, benefitting from a suite of molecular and genetic tools and displaying highly conserved traits of cardiac senescence. Here, we discuss recent advances in our understanding of cardiac aging and how the fruit fly has aided in these developments.  相似文献   

11.
Interleukin 18 (IL-18) is a proinflammatory cytokine in the IL-1 family that has been implicated in a number of disease states. In animal models of acute myocardial infarction (AMI), pressure overload, and LPS-induced dysfunction, IL-18 regulates cardiomyocyte hypertrophy and induces cardiac contractile dysfunction and extracellular matrix remodeling. In patients, high IL-18 levels correlate with increased risk of developing cardiovascular disease (CVD) and with a worse prognosis in patients with established CVD. Two strategies have been used to counter the effects of IL-18:IL-18 binding protein (IL-18BP), a naturally occurring protein, and a neutralizing IL-18 antibody. Recombinant human IL-18BP (r-hIL-18BP) has been investigated in animal studies and in phase I/II clinical trials for psoriasis and rheumatoid arthritis. A phase II clinical trial using a humanized monoclonal IL-18 antibody for type 2 diabetes is ongoing. Here we review the literature regarding the role of IL-18 in AMI and heart failure and the evidence and challenges of using IL-18BP and blocking IL-18 antibodies as a therapeutic strategy in patients with heart disease.  相似文献   

12.
Biological aging dynamically alters normal immune and cardiac function, favoring the production of pro‐inflammatory cytokines (IL‐1β, IL‐6, and TNF‐α) and increased instances of cardiac distress. Cardiac failure is the primary reason for hospitalization of the elderly (65+ years). The elderly are also increasingly susceptible to developing chronic bacterial infections due to aging associated immune abnormalities. Since bacterial infections compound the rates of cardiac failure in the elderly, and this phenomenon is not entirely understood, the interplay between the immune system and cardiovascular function in the elderly is of great interest. Using Mycobacterium avium, an opportunistic pathogen, we investigated the effect of mycobacteria on cardiac function in aged mice. Young (2–3 months) and old (18–20 months) C57BL/6 mice were intranasally infected with M. avium strain 104, and we compared the bacterial burden, immune status, cardiac electrical activity, pathology, and function of infected mice against uninfected age‐matched controls. Herein, we show that biological aging may predispose old mice infected with M. avium to mycobacterial dissemination into the heart tissue and this leads to cardiac dysfunction. M. avium infected old mice had significant dysrhythmia, cardiac hypertrophy, increased recruitment of CD45+ leukocytes, cardiac fibrosis, and increased expression of inflammatory genes in isolated heart tissue. This is the first study to report the effect of mycobacteria on cardiac function in an aged model. Our findings are critical to understanding how nontuberculous mycobacterium (NTM) and other mycobacterial infections contribute to cardiac dysfunction in the elderly population.  相似文献   

13.
Cardiovascular insults such as myocardial infarction and chronic hypertension can trigger the heart to undergo a remodeling process characterized by myocyte hypertrophy, myocyte death and fibrosis, often resulting in impaired cardiac function and heart failure. Pathological cardiac remodeling is associated with inflammation, and therapeutic approaches targeting inflammatory cascades have shown promise in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models, suggesting unforeseen potential for this class of compounds for the treatment of heart failure. In addition to their beneficial effects on myocardial cells, HDAC inhibitors have potent antiinflammatory actions. This review highlights the roles of HDACs in the heart and the potential for using HDAC inhibitors as broad-based immunomodulators for the treatment of human heart failure.  相似文献   

14.
15.
As we enter the 21st century, the segment of the population that is the most rapidly expanding is that comprised of individuals 85 yr of age and older. Dysfunctions of the gastrointestinal (GI) system, including dysphagia, constipation, diarrhea, and irritable bowel syndrome are more common complaints of the elderly, yet our knowledge of the aging GI tract is incomplete. Compared with the rapid advances in the neurobiology of aging in the central nervous system, the understanding of age-related changes in the enteric nervous system (ENS) is poor. In this brief review, I recap experiments that reveal neurodegenerative changes and their functional correlates in the ENS of mice, rats, and guinea pigs. Clinical literature seems indicative of similar structural and functional age-related changes in the human ENS. Current studies that address the mechanisms underlying age-related changes in the ENS are introduced. The future directions for this field include physiological and pharmacological studies, especially at cellular and molecular levels. Research in the aging ENS is poised to make major advances, and this new knowledge will be useful for clinicians seeking to better understand and treat GI dysfunction in the elderly.  相似文献   

16.
17.
Immunosenescence via increased inflammatory cytokines may play key regulatory roles in facilitating cardiac infections and heart failure. Based upon recent evidence, we hypothesize that cytokine polarization due to aging directly dysregulates fibroblasts, leading to altered cardiac structure and dysfunction. Some dietary fatty acids should ameliorate heightened inflammatory cytokines thereby retarding cardiac pathology, loss of structural collagen and premature death from heart failure. For example, T-helper (Th) 2 cells' cytokine levels are very high in seniors who have increased heart disease due to suppressed resistance to cardiotrophic pathogens. In addition, such inflammatory cytokines deregulate fibroblasts, thus reducing collagen synthesis, weakening muscle structure and heart pump function for heart failure and hypertension. Therefore, supplementation with n-3 polyunsaturated fatty (PUFA) or conjugated linoleic acids, by reducing Th2 and increasing Th1 cytokines, may provide a sensible and widely available means to treat and even prevent excessive inflammatory cytokines and their cardiotoxic effects. On the other hand, dietary n-6 PUFA may promote cytokine polarization in seniors, exacerbating age-related heart dysfunction.  相似文献   

18.
Cardiac hypertrophy is characterized by an increase in myocyte size in the absence of cell division. This condition is thought to be an adaptive response to cardiac wall stress resulting from the enhanced cardiac afterload. The pathogenesis of heart dysfunction, which is one of the primary causes of morbidity and mortality in elderly people, is often associated with myocardial remodelling caused by cardiac hypertrophy. In order to well understand the potential mechanisms, we described the molecules involved in the development and progression of myocardial hypertrophy. Increasing evidence has indicated that micro‐RNAs are involved in the pathogenesis of cardiac hypertrophy. In addition, molecular biomarkers including vascular endothelial growth factor B, NAD‐dependent deacetylase sirtuin‐3, growth/differentiation factor 15 and glycoprotein 130, also play important roles in the development of myocardial hypertrophy. Knowing the regulatory mechanisms of these biomarkers in the heart may help identify new molecular targets for the treatment of cardiac hypertrophy.  相似文献   

19.
Research into the prevention and treatment of age-related metabolic diseases are important in the present-day situation of the aging population. We propose that an elderly diabetic mouse model may be useful to such research as it exhibits deterioration of glucose and lipid metabolism. Although the KK mouse strain is commonly used as a model of moderate obesity and type 2 diabetes, the utility of this strain as an elderly obese and diabetic model mouse for research into aging remains unclear. The present study aimed to investigate age-related changes of glucose and lipid metabolism in male KK mice fed a standard chow diet. We demonstrate that 40 weeks KK mice exhibit age-related dysfunctions, such as development of insulin resistance associated with pancreatic islet hypertrophy and decreased lipolysis in white adipose tissue (WAT) compared with 15 weeks KK mice. However, aging does not appear to cause mitochondrial dysfunction of brown adipose tissue. Unexpectedly, hyperglycemia, potential glucose uptake in insulin-sensitive organs, hepatic lipid accumulation, hypertrophy of adipocytes, and inflammation in epididymal WAT did not worsen but rather compensated in 40 weeks KK mice. Our data indicate that the use of male KK mice as an elderly obese and diabetic mouse model has some limitations and in order to represent a useful elderly obese and diabetic animal model, it may be necessary to induce deterioration of glucose and lipid metabolism in KK mice through breeding with high-sucrose or high-fat diets.  相似文献   

20.
The proportion of elderly people rises in the developed countries. The increased susceptibility of the elderly to infectious diseases is caused by immune dysfunction, especially T cell functional decline. Age-related hematopoietic stem cells deviate from lymphoid lineage to myeloid lineage. Thymus shrinks early in life, which is followed by the decline of na?ve T cells. T-cell receptor repertoire diversity declines by aging, which is caused by cytomegalovirus-driven T cell clonal expansion. Functional decline of B cell induces antibody affinity declines by aging. Many effector functions including phagocytosis of myeloid cells are down regulated by aging. The studies of aging of myeloid cells have some controversial results. Although M1 macrophages have been shown to be replaced by antiinflammatory(M2) macrophages by advanced age, many human studies showed that pro-inflammatory cytokines are elevated in older human. To solve this discrepancy here we divide age-related pathological changes into two categories. One is an aging of immune cell itself. Second is involvement of immune cells to age-related pathological changes. Cellular senescence and damaged cells in aged tissue recruit pro-inflammatory M1 macrophages, which produce pro-inflammatory cytokines and proceed to agerelated diseases. Underlying biochemical and metabolic studies will open nutritional treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号