首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Left-handed Z form in superhelical DNA: a theoretical study   总被引:8,自引:0,他引:8  
This is a comprehensive statistical mechanical treatment of the Z form formation in purinepyrimidine stretches of different length inserted into superhelical DNA. The B-Z transition for short inserts is shown to follow the "all-or-none" principle. Over some critical value of the insert length n, the B-Z transition in the insert proceeds in two stages. The flipping of m base pairs into the Z form is followed by a gradual growth of the Z-form stretch until it occupies the whole insert. By fitting the theoretical transition curves to experimental ones the fundamental thermodynamic parameters of the B-Z transition have been determined: the B-Z junction energy Fj = 4-5kcal.mol-1 and the free energy change delta FBZ = 0.5-7.0 kcal.mol-1 under standard salt conditions. Calculations show that the B-Z transition in short purinepyrimidine inserts may be seriously affected by cruciform formation in the carrier DNA.  相似文献   

2.
Three rat L1 element integration (target) sites chosen at random can adopt non-B DNA structures in vitro at normal bacterial superhelical densities. These target sites contain, respectively, short, mixed (AT)n tracts that we show can form one or more cruciforms, short (GT)n tracts, or polypurine:polypyrimidine regions. These sites share no sequence homology, and a non-B DNA structure appears to be the only feature common to them all. When the right end of the L1Rn3 element which forms a complex series of non-B DNA structures including two triplexes, and its target site which undergoes cruciform extrusion, are present on the same supercoiled molecule, they compete for available supercoil energy. The amount of non-B DNA formed at each site varies with pH, the concentration of cations, and the size of the topological domain. The implication of our findings for recombination of L1 elements and for the effect of these elements on contiguous DNA sequences is discussed.  相似文献   

3.
4.
A proteolytically modified form of the Escherichia coli single-stranded DNA-Binding protein (SSB) has been crystallized from 15% saturated sodium citrate. Crystals as large as 1.0 mm x 0.3 mm x 0.2 mm were obtained and these diffract beyond 3A resolution. X-ray photographic analysis demonstrated a rhombohedral unit cell of space group R3 with an equivalent triple centered hexagonal unit cell having dimensions of a = b = 62.9A and c = 264.3A. These crystals were judged to be adequate for a three dimensional structure determination.  相似文献   

5.
Ligand binding to proteins: the binding landscape model.   总被引:4,自引:3,他引:1       下载免费PDF全文
Models of ligand binding are often based on four assumptions: (1) steric fit: that binding is determined mainly by shape complementarity; (2) native binding: that ligands mainly bind to native states; (3) locality: that ligands perturb protein structures mainly at the binding site; and (4) continuity: that small changes in ligand or protein structure lead to small changes in binding affinity. Using a generalization of the 2D HP lattice model, we study ligand binding and explore these assumptions. We first validate the model by showing that it reproduces typical binding behaviors. We observe ligand-induced denaturation, ANS and heme-like binding, and "lock-and-key" and "induced-fit" specific binding behaviors characterized by Michaelis-Menten or more cooperative types of binding isotherms. We then explore cases where the model predicts violations of the standard assumptions. For example, very different binding modes can result from two ligands of identical shape. Ligands can sometimes bind highly denatured states more tightly than native states and yet have Michaelis-Menten isotherms. Even low-population binding to denatured states can cause changes in global stability, hydrogen-exchange rates, and thermal B-factors, contrary to expectations, but in agreement with experiments. We conclude that ligand binding, similar to protein folding, may be better described in terms of energy landscapes than in terms of simpler mass-action models.  相似文献   

6.
H Prinz  A Maelicke 《Biochemistry》1992,31(29):6728-6738
We have studied by means of equilibrium binding and kinetic experiments the interaction of the membrane-bound nicotinic acetylcholine receptor (nACHR) from Torpedo marmorata with [3H]acetylcholine and the fluorescent agonist NBD-5-acylcholine. In agreement with previous studies by others, we observed the preexistence, in the absence of ligand, of an equilibrium between two states of the nAChR, one with high affinity and the other with low affinity for agonist. As additional requirements for a minimal reaction scheme, we recognized (i) the existence of two ligand-binding sites, each of which may exist in two conformational states when occupied, and (ii) ligand-induced transitions between these conformations. Employing a special form of the allosteric model which considers these requirements, we then developed a suitable algorithm in order to simultaneously fit the whole set of equilibrium binding and kinetic data obtained for the two ligands. In this way we determined for a minimal model of the mechanism of action of the nAChR the complete set of rate constants and KD values involved. With these values available, we were able to simulate the rise and fall in the concentrations of individual receptor-ligand complexes and conformations occurring in the course of excitatory events at the electrocyte synapse. The membrane environment of the nAChR plays a decisive role with respect to the rates of conformational change of the nAChR occurring in the course of ligand interaction. Thus, artificial changes in membrane structure and composition can speed up by several orders of magnitude the rate of conformational change ("desensitization"). A proper structure of the surrounding membrane hence is a prerequisite for the physiological function of the membrane-embedded nAChR.  相似文献   

7.
Three cellular retinol-binding protein (CRBP) types (CRBP I, II, and III) with distinct tissue distributions and retinoid binding properties have been structurally characterized thus far. A human binding protein, whose mRNA is expressed primarily in kidney, heart, and transverse colon, is shown here to be a CRBP family member (human CRBP IV), according to amino acid sequence, phylogenetic analysis, gene structure organization, and x-ray structural analysis. Retinol binding to CRBP IV leads to an absorption spectrum distinct from a typical holo-CRBP spectrum and is characterized by an affinity (K(d) = approximately 200 nm) lower than those for CRBP I, II, and III, as established in direct and competitive binding assays. As revealed by mutagenic analysis, the presence in CRBP IV of His(108) in place of Gln(108) is not responsible for the unusual holo-CRBP IV spectrum. The 2-A resolution crystal structure of human apo-CRBP IV is very similar to those of other structurally characterized CRBPs. The side chain of Tyr(60) is present within the binding cavity of the apoprotein and might affect the interaction with the retinol molecule. These results indicate that human CRBP IV belongs to a clearly distinct CRBP subfamily and suggest a relatively different mode of retinol binding for this binding protein.  相似文献   

8.
The binding of concanavalin A to corn starch was investigated by fluorimetric assay. The extent of binding varied linearly with the mass of ligand, and followed a hyperbolic law with respect to the mass of starch. This led to an isotherm of binding: r = 0.33AoMEo?0.88, where r is the extent of binding, Ao is the mass of concanavalin A present (both bound and unbound), and Mo is the mass of starch. These results, and Scatchard plots of the data, showed the binding to be positively cooperative. The exponent of the Mo term was shown to be a measure of cooperativity. The binding was dependent on the ionic strength of the dispersion medium, and this indicated that the binding may have an electrostatic component.  相似文献   

9.
A continuum solvent model based on the generalized Born (GB) or finite-difference Poisson-Boltzmann (FDPB) approaches has been employed to compare the binding of 4'-6-diamidine-2-phenyl indole (DAPI) to the minor groove of various DNA sequences. Qualitative agreement between the results of GB and FDPB approaches as well as between calculated and experimentally observed trends regarding the sequence specificity of DAPI binding to B-DNA was obtained. Calculated binding energies were decomposed into various contributions to solvation and DNA-ligand interaction. DNA conformational adaptation was found to make a favorable contribution to the calculated total interaction energy but did not change the DAPI binding affinity ranking of different DNA sequences. The calculations indicate that closed complex formation is mainly driven by nonpolar contributions and was found to be disfavored electrostatically due to a desolvation penalty that outbalances the attractive Coulomb interaction. The calculated penalty was larger for DAPI binding to GC-rich sequences compared with AT-rich target sequences and generally larger for the FDPB vs the GB continuum model. A radial interaction profile for DAPI at different distances from the DNA minor groove revealed an electrostatic energy minimum a few Angstroms farther away from the closed binding geometry. The calculated electrostatic interaction up to this distance is attractive and it may stabilize a nonspecific binding arrangement.  相似文献   

10.
Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well.  相似文献   

11.
The binding affinity and binding mode of S- and R-ofloxacin, one of the quinolone antibiotics, to B form calf thymus DNA were studied in this work. The binding affinity of S-ofloxacin measured by both Stern-Volmer and Benesi-Hilderbrand methods was greater by a factor of 5 compared to R-enantiomer and the CD spectrum of the former is largely altered while that of the latter remained the same in the presence of DNA, indicating the enantiospecific binding of this drug to DNA. The binding geometry of both S- and R-ofloxacin calculated from the reduced linear dichroism was similar to norfloxacin, which is partially intercalated from the minor groove.  相似文献   

12.
13.
In this report we examine the DNA-cellulose binding and sedimentation properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptors from rat intestine and cultured human mammary cancer cells (MCF-7) extracted in nonactivating (low salt) buffers. Receptors prepared in hypotonic buffer had low DNA binding (13%) compared to receptors extracted with 0.3 M KCl (50%). Treatment of low salt receptor preparations with KCl significantly increased (approximately 3-fold) DNA-binding (activation), demonstrating that receptors can be "activated" in vitro. Activated receptors eluted from DNA-cellulose at 0.18 M KCl. Sedimentation analysis followed by DNA-cellulose binding indicated that activated receptors are approximately 3.2 S and unactivated receptors 5.5 S in size. These results suggest that dissociation of an aggregated moiety may lead to receptor activation. Treatment of unactivated receptor with RNase did not alter DNA binding or sedimentation properties of the aggregated receptor. Treatment of unactivated receptor complexes with heat did not increase DNA binding, and molybdate did not block subsequent salt activation. In summary these results suggest that 1,25(OH)2D3 receptors undergo a salt-induced activation step similar to that described for other steroid receptor systems. However, 1,25(OH)2D3 receptors differ from other steroid receptors in not exhibiting heat activation nor having salt activation blocked by molybdate.  相似文献   

14.
15.
The interaction between urokinase plasminogen activator (uPA) and its cellular receptor (uPAR) is a key event in cell surface-associated plasminogen activation, relevant for cell migration and invasion. In order to define receptor recognition sites for uPA, we have expressed uPAR fragments as fusion products with the minor coat protein on the surface of M13 bacteriophages. Sequence analysis of cDNA fragments encoding uPA-binding peptides indicated the existence of a composite uPA-binding structure including all three uPAR domains. This finding was confirmed by experiments using an overlapping 15-mer peptide array covering the entire uPAR molecule. Four regions within the uPAR sequence were found to directly bind to uPA: two distinct regions containing amino acids 13--20 and amino acids 74--84 of the uPAR domain I, and regions in the putative loop 3 of the domains II and III. All the uPA-binding fragments from the three domains were shown to have an agonistic effect on uPA binding to immobilized uPAR. Furthermore, uPAR-(154--176) increased uPAR-transfected BAF3-cell adhesion on vitronectin in the presence of uPA, whereas uPAR-(247--276) stimulated the cell adhesion both in the absence or presence of uPA. The latter fragment was also able to augment the binding of vitronectin to uPAR in a purified system, thereby mimicking the effect of uPA on this interaction. These results indicate that uPA binding can take place to particular part(s) on several uPAR molecules and that direct uPAR-uPAR contacts may contribute to receptor activation and ligand binding.  相似文献   

16.
R C Lawson  S S York 《Biochemistry》1987,26(15):4867-4875
The stoichiometry of lac repressor binding to nonspecific DNA was investigated by three different techniques. Four molecules of the fluorescent probe 5,5'-bis(8-anilino-1-naphthalenesulfonate) [bis(ANS)] bind to each repressor subunit with an average dissociation constant of 20 microM. Nonspecific DNA displaces most of this bound bis(ANS), reducing the fluorescence. Titrations of repressor with nonspecific DNA monitored with high [bis(ANS)] (5-15 microM) had end points at 8 base pairs per repressor. Lower [bis(ANS)] (0.1-1 microM) resulted in end points at either 15 or 26 base pairs per repressor, depending on the ionic strength. These end points correspond to complexes containing approximately one, two, or four repressors per 28 base pairs. Boundary sedimentation velocity experiments with saturating amounts of repressor revealed that five repressors can bind to 28 base pairs. By monitoring the circular dichroism as DNA was added to repressor, the sequential appearance of complexes containing approximately four, two, and one repressors per 28 base pairs was observed. The inability of repressor cores or iodinated repressor to bind to complexes containing one or two repressors per 28 base pairs implies that all of the repressors directly contact the DNA in the complex containing four repressors per 28 base pairs. It is proposed that while two subunits of each repressor contact the DNA in complexes containing one or two repressors per 28 base pairs, only one subunit of each repressor contacts the DNA in the complex with four repressors per 28 base pairs. These results suggest a novel mechanism for the one-dimensional diffusion of repressor along DNA.  相似文献   

17.
W D Wosilait 《Life sciences》1974,14(11):2189-2198
The distribution of bilirubin in plasma between the free and bound forms was analyzed by use of a computer program. The analysis showed that 98% to 99% of the total amount would be bound by the high affinity set of sites and 1% to 2% by the low affinity set of sites; only 0.000011% to 0.0028% would be free over a concentration range of 0 to 200 mg/L. Although the high affinity set of sites would bind most of the bilirubin, the low affinity set of sites would bind more than 500 times as much as would be free which suggests that these sites should be considered as potential reservoirs of bilirubin in displacement reactions by drugs. A reduction in the level of protein from 5, 4, 3, to 2 gm% would result in a progressive increase in the amount of free bilirubin. Along with the reduction in protein concentration was an increase in the relative amount of bilirubin bound by the low affinity set of sites.  相似文献   

18.
Geminiviruses are plant DNA viruses with small genomes whose replication, except for the viral replication protein (Rep), depends on host proteins and, in this respect, are analogous to animal DNA tumor viruses, e.g. SV40. The mechanism by which these animal viruses create a cellular environment permissive for viral DNA replication involves the binding of a virally encoded oncoprotein, through its LXCXE motif, to the retinoblastoma protein (Rb). We have identified such a LXCXE motif in the Rep protein of wheat dwarf geminivirus (WDV) and we show its functional importance during viral DNA replication. Using a yeast two-hybrid system we have demonstrated that WDV Rep forms stable complexes with p130Rbr2, a member of the Rb family of proteins, and single amino acid changes within the LXCXE motif abolish the ability of WDV Rep to bind to p130Rbr2. The LXCXE motif is conserved in other members of the same geminivirus subgroup. The presence of an intact Rb binding motif is required for efficient WDV DNA replication in cultured wheat cells, strongly suggesting that one of the functions of WDV Rep may be the linking between viral and cellular DNA replication cycles. Our results point to the existence of a Rb-like protein(s) in plant cells playing regulatory roles during the cell cycle.  相似文献   

19.
Saltatory search: a theoretical analysis   总被引:3,自引:1,他引:3  
Many animal search in a saltatory fashion: they move forward,pause briefly, and move forward again. Although many optimal-foragingmodels have been developed, most do not address how an animalsearches for food. We view search strategies as "time-distance"functions to allow not only for the possibility of oscillationsin body speed, as implied by saltatory search, but other movementpatterns as well, including cruise search. The key feature ofour models is distinguishing between the body position and thescan position (where the forager is looking). We see the varyingmovement of saltatory search as a consequence of the curvaturein the functions that relate body speed to benefits (Jensen'sinequality)  相似文献   

20.
DNA synthesis at a fork in the presence of DNA helicases   总被引:6,自引:0,他引:6  
In a mixture of Escherichia coli DNA polymerase III holoenzyme, single-strand-binding protein, artificially forked lambda bacteriophage DNA with primer annealed to the leading side of the fork, dNTPs and ATP, DNA synthesis is enhanced by helicase II, less so by helicases, I, III or rep protein of E. coli or T4 phage helicase. The effect of helicase II depends on ATP, it is enhanced by helicase III, and it is not observed using DNA polymerase I or T4 DNA polymerase. In the absence of dNTPs helicase II is less active than helicase I or T4 helicase in unwinding the forked DNA. We believe that helicase II both shifts the forks and stimulates DNA polymerase III. The results support the conclusion derived from previous studies that helicase II is part of the DNA-synthesizing system of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号