首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-chain antibody (scAb) against human immunodeficiency virus type 1 (HIV-1) integrase was expressed as a fusion protein of scAb and HIV-1 viral protein R (Vpr), together with the HIV-1 genome, in human 293T cells. The expression did not affect virion production much but markedly reduced the infectivity of progeny virions. The fusion protein was found to be incorporated into the virions. The incorporation appears to account for the reduced infectivity.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) particles consists of two molecules of genomic RNA as well as molecules originating from gag, pol, and env products, all synthesized as precursor proteins. The 96-amino-acid Vpr protein, the only virion-associated HIV-1 regulatory protein, is not part of the virus polyprotein precursors, and its incorporation into virus particles must occur by way of an interaction with a component normally found in virions. To investigate the mechanism of incorporation of Vpr into the HIV-1 virion, Vpr- proviral DNA constructs harboring mutations or deletions in specific virion-associated gene products were cotransfected with Vpr expressor plasmids in COS cells. Virus released from the transfected cells was tested for the presence of Vpr by immunoprecipitation with Vpr-specific antibodies. The results of these experiments show that Vpr is trans-incorporated into virions but at a lower efficiency than when Vpr is expressed from a proviral construct. The minimal viral genetic information necessary for Vpr incorporation was a deleted provirus encoding only the pr55gag polyprotein precursor. Incorporation of Vpr requires the expression but not the processing of gag products and is independent of pol and env expression. Direct interaction of Vpr with the Pr55gag precursor protein was demonstrated by coprecipitation experiments with gag product-specific antibodies. Overall, these results indicate that HIV-1 Vpr is incorporated into the nascent virion through an interaction with the Gag precursor polyprotein and demonstrate a novel mechanism by which viral protein can be incorporated into virus particles.  相似文献   

3.
Vpr and Vpx are the auxiliary proteins of human immunodeficiency viruses (HIVs) selectively incorporated into mature viral particles. We showed that the bacterial chloramphenicol acetyltransferase (CAT) fused to the N-terminus of HIV-1 Vpr, HIV-2 Vpr, or HIV-2 Vpx was incorporated into mature virions in a type-selective manner. By using chimeric proteins between HIV-1 Vpr and HIV-2 Vpx, we found that the N-terminal side of these proteins was mainly important for type-selective virion incorporation. The C-terminal arginine-rich region of HIV-1 Vpr was also found to transport CAT fusion proteins into virions but without any type selectivity. Furthermore, the corresponding regions of HIV-2 Vpr and HIV-2 Vpx had no such activity. This region of HIV-1 Vpr may interact nonspecifically with viral genomic RNA. Collectively, Vpr and Vpx may provide a means to introduce foreign proteins and other molecules into HIV virions for therapeutic purposes.  相似文献   

4.
The Vpr protein, encoded by the human immunodeficiency virus type 1 (HIV-1) genome, is one of the nonstructural proteins packaged in large amounts into viral particles. We have previously reported that Vpr associates with the DNA repair enzyme uracil DNA glycosylase (UDG). In this study, we extended these observations by investigating whether UDG is incorporated into virions and whether this incorporation requires the presence of Vpr. Our results, with highly purified viruses, show that UDG is efficiently incorporated either into wild-type virions or into Vpr-deficient HIV-1 virions, indicating that Vpr is not involved in UDG packaging. Using an in vitro protein-protein binding assay, we reveal a direct interaction between the precursor form of UDG and the viral integrase (IN). Finally, we demonstrate that IN-defective viruses fail to incorporate UDG, indicating that IN is required for packaging of UDG into virions.  相似文献   

5.
W Paxton  R I Connor    N R Landau 《Journal of virology》1993,67(12):7229-7237
The product of the vpr open reading frame of human immunodeficiency virus type 1 (HIV-1) is a 15-kDa, arginine-rich protein that is present in virions in molar quantities equivalent to that of Gag. We report here the results of our investigations into the mechanism by which Vpr is incorporated into virions during assembly in infected cells. For these studies we used an expression vector encoding a Vpr molecule fused at its amino terminus to a nine-amino-acid peptide from influenza virus hemagglutinin. The tagged Vpr expression vector and a vpr mutant HIV-1 provirus were used to cotransfect COS cells, and the resulting virions were tested for the presence of the tagged protein on immunoblots probed with monoclonal antibody against the hemagglutinin peptide. The COS-produced virions were found to contain readily detectable amounts of tagged Vpr and smaller amounts of a putative tagged Vpr dimer. Infectivity of the particles was not altered by incorporation of tagged Vpr. Our results using this system in combination with mutant HIV-1 proviruses suggested that incorporation of Vpr into virions requires the carboxy-terminal Gag protein of HIV-1 (p6) but not gp160, Pol, or genomic viral RNA. In addition, analysis of mutated, tagged Vpr molecules suggested that amino acids near the carboxy terminus (amino acids 84 to 94) are required for incorporation of Vpr into HIV-1 virions. The single cysteine residue near the carboxy terminus was required for production of a stable protein. Arginine residues tested were not important for incorporation or stability of tagged Vpr. These results suggested a novel strategy for blocking HIV-1 replication.  相似文献   

6.
Incorporation of Vpr into human immunodeficiency virus type 1 (HIV-1) virions is mediated by the Gag protein, independently of other viral components. We have coexpressed Vpr and Gag constructs in a vaccinia virus expression system in order to map the region of Gag involved in Vpr packaging. Deletion of the carboxyl-terminal p6 region of Gag impaired the ability of Gag to package Vpr. To confirm the role of p6 in Vpr packaging, Rous sarcoma virus (RSV)-HIV chimeras containing HIV-1 p6 were constructed. Although RSV Gag does not package Vpr into virus particles, a chimera containing HIV-1 p6 is sufficient for Vpr incorporation. To map the region of p6 involved in Vpr packaging, a series of p6 point mutations and deletion mutations was analyzed. Mutations in the N-terminal p6 proline-rich domain, for which preliminary evidence shows a marked decrease in virion incorporated RNA, did not affect Vpr incorporation. Deletion of residues 1 to 31 of HIV-1 p6 did not affect Vpr packaging, but residues 35 to 47, including an (LXX)4 domain, were required for Vpr incorporation into virus particles.  相似文献   

7.
Retroviruses must gain access to the host cell nucleus for subsequent replication and viral propagation. Human immunodeficiency virus type 1 (HIV-1) and other primate lentiviruses are distinguished from the gammaretroviruses by their ability to infect nondividing cells such as macrophages, an important viral reservoir in vivo. Rather than requiring nuclear membrane breakdown during cell division, the HIV-1 preintegration complex (PIC) enters the nucleus by traversing the central aqueous channel of the limiting nuclear pore complex. The HIV-1 PIC contains three nucleophilic proteins, matrix, integrase, and Vpr, all of which have been implicated in nuclear targeting. The mechanism by which Vpr can display such nucleophilic properties and yet also be available for incorporation into virions assembling at the plasma membrane is unresolved. We recently characterized Vpr as a nucleocytoplasmic shuttling protein that contains two novel nuclear import signals and an exportin-1-dependent nuclear export signal (NES). We now demonstrate that mutation of this NES impairs the incorporation of Vpr into newly formed virions. Furthermore, we find that the Vpr NES is required for efficient HIV replication in tissue macrophages present in human spleens and tonsils. These findings underscore how the nucleocytoplasmic shuttling of Vpr not only contributes to nuclear import of the HIV-1 PIC but also enables Vpr to be present in the cytoplasm for incorporation into virions, leading to enhancement of viral spread within nondividing tissue macrophages.  相似文献   

8.
The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.  相似文献   

9.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is a small accessory protein involved in the nuclear import of viral DNA and the growth arrest of host cells. Several studies have demonstrated that a significant amount of Vpr is incorporated into the virus particle via interaction with the p6 domain of Gag, and it is generally assumed that Vpr is packaged in equimolar ratio to Gag. We have quantitated the relative amount of Vpr in purified virions following [(35)S]cysteine labeling of infected MT-4 cells, as well as by quantitative immunoblotting and found that Vpr is present in a molar ratio of approximately 1:7 compared to capsid. Analysis of isolated core particles showed that Vpr is associated with the mature viral core, despite quantitative loss of p6 from core preparations. Metabolic labeling of infected cells with ortho[(32)P]phosphate revealed that a small fraction of Vpr is phosphorylated in virions and infected cells.  相似文献   

10.
The vpr gene product of human immunodeficiency virus type (HIV-1) is a virion-associated regulatory protein. A transferable virion association motif for Vpr is located in the p6 domain of the HIV-1 Gag polyprotein. To map the sequences in p6 that are involved in Vpr incorporation, we analyzed the ability of mutant forms of p6 to direct the incorporation of Vpr into chimeric viral particles. Our results show that the determinants which govern Vpr incorporation are largely confined to a C-terminal region of the p6 domain. Within this region, three hydrophobic residues in a highly conserved sequence motif (L-X-S-L-F-G) are absolutely required. Remarkably, the transfer of the conserved motif and of a single flanking residue to a heterologous Gag polyprotein was sufficient to transfer the ability to incorporate Vpr at moderate levels. The transfer of residues 32 to 46 of p6 led to Vpr incorporation levels that were comparable to those obtained with full-length HIV-1 Gag protein, indicating that this region contains essentially all the information required for efficient Vpr incorporation.  相似文献   

11.
12.
13.
Ohagen A  Gabuzda D 《Journal of virology》2000,74(23):11055-11066
  相似文献   

14.
Vpr and Vpx proteins from human and simian immunodeficiency viruses (HIV and SIV) are incorporated into virions in quantities equivalent to those of the viral Gag proteins. We demonstrate here that Vpr and Vpx proteins from distinct lineages of primate lentiviruses were able to bind to their respective Gag precursors. The capacity of HIV type 1 (HIV-1) Vpr mutants to bind to Pr55Gag was correlated with their incorporation into virions. Molecular analysis of these interactions revealed that they required the C-terminal p6 domain of the Gag precursors. While the signal for HIV-1 Vpr binding lies in the leucine triplet repeat region of the p6 domain reported to be essential for incorporation, SIVsm Gag lacking the equivalent region still bound to SIVsm Vpr and Vpx, indicating that the determinants for Gag binding are located upstream of this region of the p6 domain. Binding to Gag cleavage products showed that HIV-1 Vpr interacted directly with the nucleocapsid protein (NC), whereas SIVsm Vpr and Vpx did not interact with NC but with the p6 protein. These results (i) reveal differences between HIV-1 and SIVsm for the p6 determinants required for Vpr and Vpx binding to Gag and (ii) suggest that HIV-1 Vpr and SIVsm Vpr and Vpx interact with distinct cleavage products of the precursor following proteolytic processing in the virions.  相似文献   

15.
Chen J  Pathak VK  Peng W  Hu WS 《Journal of virology》2008,82(17):8253-8261
We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5alpha protein from the rhesus monkey (rhTRIM5alpha) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIV(mac) CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5alpha. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5alpha would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.  相似文献   

16.
The human immunodeficiency virus type 1 Vpr protein is both packaged into virions and efficiently localized to the nucleus. In this report, we show that a significant fraction of Vpr also accumulates in the cytoplasm of virus-producing cells. Although Vpr shuttles between the nucleus and the cytoplasm, studies with an export-deficient Vpr mutant reveal that nuclear export is not required for virion incorporation.  相似文献   

17.
The Nef protein of human immunodeficiency virus type 1 (HIV-1) promotes virion infectivity through mechanisms that are yet ill defined. Some Nef is incorporated into particles, where it is cleaved by the viral protease between amino acids 57 and 58. The functional significance of this event, which liberates the C-terminal core domain of the protein from its membrane-associated N terminus, is unknown. To address this question, we examined the modalities of Nef virion association and processing. We found that although significant levels of Nef were detected in HIV-1 virions partly in a cleaved form, cell-specific variations existed in the efficiency of Nef proteolytic processing. The virion association of Nef was strongly enhanced by myristoylation but did not require other HIV-1-specific proteins, since Nef was efficiently incorporated into and cleaved inside murine leukemia virus particles. Substituting alanine for tryptophan57 decreased the efficiency of Nef processing, while mutating leucine58 had little effect. In contrast, replacing both of these residues simultaneously almost completely prevented this process. However, when the resulting mutants were compared with a wild-type control in viral infectivity assays, no correlation was found between the levels of cleavage and the ability to stimulate virion infectivity. Furthermore, simian immunodeficiency virus Nef, which lacks the sequence recognized by the protease and as a consequence is not cleaved despite its incorporation into virions, could stimulate the infectivity of a nef-defective HIV-1 variant as efficiently as HIV-1 Nef. On these bases, we conclude that the proteolytic processing of Nef is not required for the ability of this protein to enhance virion infectivity.  相似文献   

18.
Vpr is a small accessory protein of human and simian immunodeficiency viruses (HIV and SIV) that is specifically incorporated into virions. Members of the HIV-2/SIV(sm)/SIV(mac) lineage of primate lentiviruses also incorporate a related protein designated Vpx. We previously identified a highly conserved L-X-X-L-F sequence near the C terminus of the p6 domain of the Gag precursor as the major virion association motif for HIV-1 Vpr. In the present study, we show that a different leucine-containing motif (D-X-A-X-X-L-L) in the N-terminal half of p6(gag) is required for the incorporation of SIV(mac) Vpx. Similarly, the uptake of SIV(mac) Vpr depended primarily on the D-X-A-X-X-L-L motif. SIV(mac) Vpr was unstable when expressed alone, but its intracellular steady-state levels increased significantly in the presence of wild-type Gag or of the proteasome inhibitor lactacystin. Collectively, our results indicate that the interaction with the Gag precursor via the D-X-A-X-X-L-L motif diverts SIV(mac) Vpr away from the proteasome-degradative pathway. While absent from HIV-1 p6(gag), the D-X-A-X-X-L-L motif is conserved in both the HIV-2/SIV(sm)/SIV(mac) and SIV(agm) lineages of primate lentiviruses. We found that the incorporation of SIV(agm) Vpr, like that of SIV(mac) Vpx, is absolutely dependent on the D-X-A-X-X-L-L motif, while the L-X-X-L-F motif used by HIV-1 Vpr is dispensable. The similar requirements for the incorporation of SIV(mac) Vpx and SIV(agm) Vpr provide support for their proposed common ancestry.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号