共查询到20条相似文献,搜索用时 15 毫秒
1.
A D Beyers C Hanekom A Rheeder A F Strachan M W Wooten A E Nel 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(10):3463-3470
Protein kinase C (PKC) regulates numerous T cell functions and is present in abundance in normal human T cells and certain T cell lines. Although crude Triton X-100 soluble material obtained from T cell pellets contains minimal PKC activity, DEAE chromatography revealed that 12 to 37% of cellular PKC was membrane associated, probably due to removal of an inhibitor through column chromatography. As in other tissues, PKC from lymphoid tissue was phospholipid and Ca2+ dependent and diolein reduced the Ca2+ requirements for enzyme activity. Hydroxylapatite chromatography revealed that T cells possess two major peaks of PKC activity. Although, the enzyme in these peaks had similar m.w. and identical iso-electric mobility, the proteins differed with respect to their autophosphorylation sites and immunoreactivity toward an isoform specific antibody. Furthermore, differences in their activities in the presence of phospholipid, diolein, and limiting amounts of Ca2+ imply that these isoforms may be differentially activated. We discuss optimal conditions for activation of PKC and its isoforms for study of T lymphocyte cellular function. 相似文献
2.
The purpose of the present study was to examine protein kinase C (PKC) isotype expression in T lymphoblasts derived from peripheral blood and the T leukaemic cell Jurkat. Using antisera reactive with PKC alpha, beta 1, and beta 2 and gamma, it was observed that T cells expressed two PKC isotypes, PKC alpha and beta 1. No PKC gamma was detected in T lymphocytes. In lymphoblasts, high levels of PKC beta compared to PKC alpha were found whereas Jurkat cells expressed high levels of alpha compared to PKC beta. Differences in the calcium sensitivity of phorbol ester-induced phosphorylation were observed in Jurkat and T lymphoblasts which correlated with the relative levels of PKC alpha and beta isotypes expressed by the cells. 相似文献
3.
4.
Elevated levels of protein kinase C activity and alpha-isoenzyme expression in murine peritoneal B cells 总被引:2,自引:0,他引:2
Conventional murine splenic B cells are stimulated to initiate DNA synthesis by the combination of a phorbol ester protein kinase C (PKC) agonist, and a calcium ionophore; in contrast, recent work from this laboratory has shown that peritoneal B cells, enriched for the Ly-1+ B cell subset, differ in that they proliferate in response to the single signal provided by phorbol ester, acting alone. To elucidate the mechanism responsible for the abbreviated signaling requirement of peritoneal B cells, studies of intracellular Ca2+ and PKC were carried out. Measurements using the calcium sensitive dye, Indo-1, showed that base line levels of intracellular Ca2+ in peritoneal B cells were similar to those of splenic B cells, and that there was no change as a result of phorbol ester treatment. However, measurements of PKC based on the phosphorylation of histone showed enzymatic activity in peritoneal B cells to be about 60% greater than that of splenic B cells on a per microgram protein basis. Furthermore, this difference was accentuated by phorbol ester treatment, so that after 4 h, membrane and cytosol fractions from peritoneal B cells contained more than 5 times the PKC activity of the corresponding splenic B cell fractions because the down-regulation of PKC was relatively delayed in peritoneal B cells. This could not be accounted for by the onset of new PKC synthesis, but may relate to the finding that peritoneal B cells express more of the alpha-isoenzyme of PKC than splenic B cells, as shown by immunoblot analysis. Together with data from experiments using the PKC inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride(H7), these results suggest that PKC activity remaining hours after phorbol ester treatment may contribute to the unusual phorbol ester responsiveness of peritoneal B cells, and indicate that B cells from separate anatomic locations differ in terms of several parameters relating to the activity and behavior of PKC. 相似文献
5.
Chang PL Tucker MA Hicks PH Prince CW 《The international journal of biochemistry & cell biology》2002,34(9):1142-1151
BACKGROUND AND AIMS: The expression of osteopontin (OPN), a protein postulated to play a role in tumorigenesis, is induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and in the in vitro initiation-promotion skin carcinogenesis model (JB6 cells). Although TPA-induced OPN expression in JB6 cells has been suggested to involve protein kinase C (PKC), the PKC isoforms and the downstream pathway mediating OPN expression have not been extensively studied. METHODS: Using the JB6 cell model, we determined the involvement of PKC isoforms, mitogen-activated protein kinase kinase (MAPK kinase/MEK) and MAPK in TPA-induced OPN expression using inhibitors specific to PKC isoforms and MEK and performing Northern blot analyses. Western blot analyses of cells treated with specific inhibitors were also performed to determine whether PKC isoforms or MEK were involved in activation of MAPK. KEY RESULTS: TPA increased the steady-state level of OPN mRNA as early as 2-4h and this expression persisted for at least 4 days. TPA induction of OPN expression in JB6 cells is mediated through PKC epsilon and PKC delta, which also mediated the phosphorylation of MAPK. Additionally, inhibition of MEK activity, which activates MAPK, attenuated TPA-induced OPN expression. These findings suggest that activation of MAPK is important in mediating OPN expression. CONCLUSION: TPA-induced steady-state OPN mRNA expression in mouse JB6 cells involves the activation of MAPK mediated through PKC epsilon and/or PKC delta. 相似文献
6.
A prolonged increase in the intracellular calcium concentration ([Ca2+]i) is essential for lymphocyte activation that includes cell proliferation and differentiation. This increase in [Ca2+]i results from Ca2+ release from the intracellular store and the subsequent Ca2+ influx from the extracellular environment via calcium channels located on the plasma membrane. Although transient receptor potential (TRP) channels have been reported to play important roles in the [Ca2+]i increase in lymphocytes, the function of these channels in lymphocyte activation remains unknown. Here, we report the comprehensive expression profile of TRP channel gene families including TRPC, TRPV, and TRPM in the murine immune system. RT-PCR analysis revealed different expression patterns of the TRP channel genes in B and T lymphocytes isolated from the spleen. Therefore, our results provide an appropriate reference of TRP gene expression in murine lymphocytes. 相似文献
7.
Protein kinase C (PKC) is involved in signaling that modulates the proliferation and differentiation of many cell types, including mammary epithelial cells. In addition, changes in PKC expression or activity have been observed during mammary carcinogenesis. In order to examine the involvement of specific PKC isoforms during normal mammary gland development, the expression and localization of PKCs alpha, delta, epsilon and zeta were examined during puberty, pregnancy, lactation, and involution. By immunoblot analysis, expression of PKC alpha, delta, epsilon and zeta proteins was increased in mammary epithelial organoids during the transition from puberty to pregnancy. In mammary gland frozen sections, PKCs alpha, delta, epsilon and zeta were stained in the luminal epithelium and myoepithelium, in varying isoform-and developmental stage-specific locations. PKC alpha was found in a punctate apical localization in the luminal epithelium during pregnancy. During lactation, PKC epsilon was present in the nucleus, and PKC zeta was concentrated in the subapical region of the luminal epithelium. Additionally, marked staining for PKCs alpha, delta, epsilon, and zeta was observed in the myoepithelial cells at the base of ducts and alveoli. This basal ductal and alveolar staining differed in intensity in a developmentally-specific fashion. During most time points (virgin, pregnant, lactating, and early involution), myoepithelial cells of the duct were more intensely stained than those lining the alveoli for PKCs alpha, delta, epsilon and zeta. During late involution (days 9-12), the preferential staining of ducts was lost or reversed, and the myoepithelial cells lining the regressing alveolar structures stained equally (PKCs epsilon and zeta) or more intensely (PKCs alpha and delta), coincident with the thickening of the myoepithelial cells surrounding the regressing alveoli. The increased PKC isoform staining at the base of alveoli during involution suggests that alveolar regression may be influenced by alterations in signaling in the alveolar myoepithelium. 相似文献
8.
The heterogeneity and differential expression of protein kinase C in nervous tissues 总被引:1,自引:0,他引:1
U Kikkawa K Ogita M S Shearman K Ase K Sekiguchi Z Naor M Ido Y Nishizuka N Saito C Tanaka 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1988,320(1199):313-324
9.
The isoenzyme pattern of protein kinase C (PKC) in lymphocytes and airway smooth muscles (ASM) was examined by Western blot using commercially available monoclonal antibodies. The results showed the presence of PKC alpha, beta, gamma, epsilon, eta, mu and zeta in lymphocytes and PKC alpha, gamma, epsilon, eta and zeta in ASM. The unexpected feature was the presence of PKCgamma in both lymphocytes and ASM of guinea pigs. Expression of this PKC isoform is usually restricted to tissues in the central nervous system or spinal cord. Expression of PKC delta, theta, lambda and tau was not detected in either lymphocytes or ASM. 相似文献
10.
The process of apoptosis is regulated at multiple levels through phosphorylation by several different protein kinases. The protein kinase C (PKC) family of isozymes have been shown to exert both inhibitory and stimulatory influences on apoptosis. During the apoptotic process phosphorylative events are known to occur also at the nuclear level. Evidence suggests that PKC isoforms play a key role in some steps that lead to nuclear disassembly during the execution phase of apoptosis. This review highlights the recent progress made in determining the roles played by individual PKC nuclear isoforms in the control of apoptosis. 相似文献
11.
Activation of protein kinase C modulates the expression of the T3/T cell antigen receptor complex on human T lymphocytes 总被引:3,自引:0,他引:3
Activators of protein kinase C induced a rapid decrease (within 15 min) in the surface expression of the T3 antigen and T-lymphocyte antigen receptor (Ti) on HPB-ALL cells, and a concomitant phosphorylation of the T3 gamma and delta polypeptides; the gamma chain was more extensively phosphorylated than the delta chain. No phosphorylation of the T3 epsilon chain and the Ti alpha and beta polypeptides was detected. Evidence was obtained that the T3 gamma chain is phosphorylated only on serine residues. 相似文献
12.
G Vilk R B Saulnier R St Pierre D W Litchfield 《The Journal of biological chemistry》1999,274(20):14406-14414
Protein kinase CK2 (formerly casein kinase II) exhibits elevated expression in a variety of cancers, induces lymphocyte transformation in transgenic mice, and collaborates with Ha-Ras in fibroblast transformation. To systematically examine the cellular functions of CK2, human osteosarcoma U2-OS cells constitutively expressing a tetracycline-regulated transactivator were stably transfected with a bidirectional plasmid encoding either catalytic isoform of CK2 (i.e. CK2alpha or CK2alpha') together with the regulatory CK2beta subunit in order to increase the cellular levels of either CK2 isoform. To interfere with either CK2 isoform, cells were also transfected with kinase-inactive CK2alpha or CK2alpha' (i. e. GK2alpha (K68M) or CK2alpha'(K69M)) together with CK2beta. In these cells, removal of tetracycline from the growth medium stimulated coordinate expression of catalytic and regulatory CK2 subunits. Increased expression of active forms of CK2alpha or CK2alpha' resulted in modest decreases in cell proliferation, suggesting that optimal levels of CK2 are required for optimal proliferation. By comparison, the effects of induced expression of kinase-inactive CK2alpha differed significantly from the effects of induced expression of kinase-inactive CK2alpha'. Of particular interest is the dramatic attenuation of proliferation that is observed following induction of CK2alpha'(K69M), but not following induction of CK2alpha(K68M). These results provide evidence for functional specialization of CK2 isoforms in mammalian cells. Moreover, cell lines exhibiting regulatable expression of CK2 will facilitate efforts to systematically elucidate its cellular functions. 相似文献
13.
D K Kim D W Lancki F H Hui F W Fitch 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(2):616-622
PMA can induce the proliferation of several CTL clones but not of several Th clones derived and tested in our laboratory. The PMA-stimulated proliferation of our CTL clones (which do not make IL-2 mRNA or protein) occurs independently of IL-2 and is not accompanied by lymphokine release. We now report, however, that protein kinase C (PKC) translocation is induced by PMA in CTL clones as well as in Th clones, which lack a proliferative response to PMA. These results suggest that PKC translocation itself is not a sufficient regulatory mechanism to account for cloned T cell proliferation. Moreover, IL-2 did not induce PKC translocation in a CTL clone, which proliferates when stimulated with IL-2. Thus, PKC translocation may not be necessary for activation of CTL proliferation. Nonetheless, cellular PKC activity appears to be required for the proliferative response of T cell clones after stimulation by PMA/PMA + calcium ionophore (A23187) or by triggering through the TCR: chronic PMA treatment, which depletes intracellular PKC activity, abrogates the proliferative response of T cell clones stimulated by PMA/PMA + A23187 or triggered through the TCR. T cell clones depleted of PKC activity, however, retain the ability to proliferate when challenged with IL-2. Murine T cell clones, therefore, possess PKC-dependent and PKC-independent pathways of proliferation that are not regulated by PKC translocation alone. 相似文献
14.
Signalling by protein kinase C isoforms in the heart 总被引:11,自引:0,他引:11
Understanding transmembrane signalling process is one of the major challenge of the decade. In most tissues, since Fisher and Krebs's discovery in the 1950's, protein phosphorylation has been widely recognized as a key event of this cellular function. Indeed, binding of hormones or neurotransmitters to specific membrane receptors leads to the generation of cytosoluble second messengers which in turn activate a specific protein kinase. Numerous protein kinases have been so far identified and roughly classified into two groups, namely serine/threonine and tyrosine kinases on the basis of the target amino acid although some more recently discovered kinases like MEK (or MAP kinase kinase) phosphorylate both serine and tyrosine residues.Protein kinase C is a serine/threonine kinase that was first described by Takai et al. [1] as a Ca- and phospholipid-dependent protein kinase. Later on, Kuo et al. [2] found that PKC was expressed in most tissues including the heart. The field of investigation became more complicated when it was found that the kinase is not a single molecular entity and that several isoforms exist. At present, 12 PKC isoforms and other PKC-related kinases [3] were identified in mammalian tissues. These are classified into three groups. (1) the Ca-activated -, -,and -PKCs which display a Ca-binding site (C2); (2) the Ca-insensitive -, -, -, -, and -PKCs. The kinases that belong to both of these groups display two cystein-rich domains (C1) which bind phorbol esters (for recent review on PKC structure, see [4]). (3) The third group was named atypical PKCs and include , , and -PKCs that lack both the C2 and one cystein-rich domain. Consequently, these isoforms are Ca-insensitive and cannot be activated by phorbol esters [5]. In the heart. evidence that multiple PKC isoforms exist was first provided by Kosaka et al. [6] who identified by chromatography at least two PKC-related isoenzymes. Numerous studies were thus devoted to the biochemical characterization of these isoenzymes (see [7] for review on cardiac PKCs) as well as to the identification of their substrates.This overview aims at updating the present knowledge on the expression, activation and functions of PKC isoforms in cardiac cells. (Mol Cell Biochem 157: 65–72, 1996) 相似文献
15.
Evidence for protein kinase C independent activation of phospholipase D by phorbol esters in lymphocytes 总被引:3,自引:0,他引:3
Y Z Cao C C Reddy A M Mastro 《Biochemical and biophysical research communications》1990,171(3):955-962
Recently it was reported that tumor-promoting phorbol esters stimulate the production of phosphatidylethanol (PEt) in lymphocytes through the activation of phospholipase D (PLD). However, it remains unclear whether this activation is mediated through protein kinase (PKC). The study reported here shows that tumor promoters 12-0-tetradecanoylphorbol-13-acetate (TPA), phorbol dibutyrate (PDBU), 12-deoxyphorbol-13-phenylacetate (DOPP), 12-deoxyphorbol-13-phenylacetate-20-acetate (DOPPA) and mezerin activated PLD, as measured by the formation of PEt, whereas Concanavalin A (ConA) had no effect. Inhibitors of PKC, sphingosine (2 x 10(-6) M - 5 x 10(-6) M), H-7, HA1004 (5 x 10(-7) - 5 x 10(-6) M) and K252a (1 x 10(-7) - 1 x 10(-6) M) failed to block the PEt synthesis induced by TPA. In fact, sphingosine increased it. Other PKC activators, 1-oleoyl-2-acetylglycerol (OAG) and dioctanoylglycerol (DiC8) had no effect on lymphocyte PLD activity. Analysis of the phospholipid contents after stimulation by TPA showed that only phosphatidylcholine (PC) was significantly decreased. Interestingly, TPA activated PLD in intact cells but not in lysates or subcellular fractions. These observations suggest that stimulation of PLD-catalyzed PEt synthesis by TPA is not solely mediated through PKC activation. 相似文献
16.
Y Nishizuka 《BioFactors (Oxford, England)》1988,1(1):17-20
Although once considered as a single entity, enzymological and molecular cloning analysis has revealed that protein kinase C exists as a family of multiple subspecies with subtle individual characteristics. The members of this family have closely related structures, but their mode of activation, and kinetic and catalytic properties appear to differ slightly from one another. Biochemical and immunocytochemical studies indicate their differential regional expression and distinct cellular localization. It is attractive to surmise that each member of this family has a defined function in processing and modulating the physiological and pathological response of different cell types to a variety of external stimuli. 相似文献
17.
Phosphorylation of the CD20 phosphoprotein in resting B lymphocytes. Regulation by protein kinase C 总被引:5,自引:0,他引:5
M A Valentine K E Meier S Rossie E A Clark 《The Journal of biological chemistry》1989,264(19):11282-11287
CD20, a B cell integral membrane protein, regulates B cell activation and is differently phosphorylated in resting and activated cells. We have previously shown that CD20 phosphorylation is increased in activated cells and in phorbol ester-treated resting cells. Phosphorylation is also altered by agents which signal B cell proliferation, such as anti-IgM and a B cell growth factor. The present study was designed to address whether protein kinase C (PKC) or other kinases used CD20 as a substrate. When purified PKC was incubated with isolated CD20, both the 35- and 37-kDa CD20 proteins were phosphorylated in vitro. Intact resting B cells were next incubated with the protein kinase inhibitors H-7, H-8, and W-7. No change in basal CD20 phosphorylation was observed in the presence of W-7 and H-8, indicating that the protein cyclic nucleotide-dependent and calmodulin-dependent kinases were not actively phosphorylating CD20. Surprisingly, the PKC inhibitor H-7 increased CD20 phosphorylation at concentrations above 25-50 microM. To assess whether PKC either activated a phosphatase or inactivated a kinase affecting CD20 phosphorylation, tryptic phosphopeptide mapping of CD20 was performed. These studies revealed that addition of phorbol 12-myristate 13-acetate increased phosphorylation of some peptides differing from those which had increased phosphorylation following addition of H-7. Furthermore, signalling through surface immunoglobulin increased phosphorylation of CD20 peptides distinct from those hyperphosphorylated following addition of phorbol 12-myristate 13-acetate. These results demonstrate that 1) CD20 has multiple phosphorylation sites, as predicted from sequence data, and 2) whereas PKC can use CD20 as substrate, at least one other unidentified kinase phosphorylates CD20 in resting cells. Our data also predict that activation of B cells via the antigen receptor (surface IgM) may activate other protein kinases in addition to PKC. 相似文献
18.
The effect of lipid A, a residue of the lipopolysaccharide molecule, on protein kinase C from B lymphocytes has been studied. Lipid A activates and promotes the translocation of protein kinase C from the soluble to the particulate membrane fraction in a cell-free system reconstituted with purified enzyme and membranes isolated from B lymphocytes. These results demonstrate that the activating effect of lipopolysaccharide on protein kinase C from B cells is due to the lipid moieties of this molecule. 相似文献
19.
Joel M. Depper Warren J. Leonard Cynthia L. Drogula Martin Krnke Thomas A. Waldmann Warner C. Greene 《Journal of cellular biochemistry》1985,27(3):267-276
Resting human T lymphocytes do not express receptors for interleukin-2, but expression is rapidly induced by exposure to PHA. After maximal expression 2-3 days after stimulation, a progressive decline in receptor number is observed. Receptor expression can be augmented by reexposure to PHA. In this study we show that activators of protein kinase C including phorbol diester, phospholipase C, and the diacylglycerol congener diC8 also increase IL-2 receptor expression. Moreover, 5-azacytidine, which inhibits cytosine methyltransferase, and hydroxyurea, which inhibits ribonucleotide reductase, also increased receptor number. These studies demonstrate that IL-2 receptor expression can be altered in vitro, and that IL-2 receptor number, in combination with IL-2 secretion, may contribute to the regulation of IL-2-dependent immune responses. 相似文献
20.
G R Guy J Gordon L Walker R H Michell G Brown 《Biochemical and biophysical research communications》1986,135(1):146-153
G0 human tonsillar B-lymphocytes were stimulated to divide by the polyclonal mitogen Staphylococcus Aureus Cowan strain 1 (SAC) and by the combined use of 12-O-tetradecanoyl phorbol-13-acetate (TPA) and the calcium ionophore ionomycin. The activities of protein kinase C, which requires Ca++ and phospholipid as co-factors, and a proteolytically cleaved form of this enzyme (protein kinase M), which is independent of calcium and phospholipid control, were determined in soluble and particulate fractions obtained from activated B cells. Treatment of G0 B cells with SAC or TPA together with ionomycin caused redistribution of protein kinase C from the soluble to the particulate fraction where the 80,000-Dalton protein kinase C was cleaved to give rise to a 50,000-Dalton form of the kinase which was also found in the cytoplasm. These data suggest that redistribution and proteolytic cleavage of protein kinase C are key signal transduction events in B cell mitogenesis. 相似文献