首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of methylurea, N,N'-dimethylurea, ethylurea, and butylurea as well as guanidine hydrochloride (GuHCl), urea and pH on the thermal stability, structural properties, and preferential solvation changes accompanying the thermal unfolding of ribonuclease A (RNase A) has been investigated by differential scanning calorimetry (DSC), UV, and circular dichroism (CD) spectroscopy. The results show that the thermal stability of RNase A decreases with increasing concentration of denaturants and the size of the hydrophobic group substituted on the urea molecule. From CD measurements in the near- and far-UV range, it has been observed that the tertiary structure of RNase A melts at about 3 degrees C lower temperature than its secondary structure, which means that the hierarchy in structural building blocks exists for RNase A even at conditions at which according to DSC and UV measurements the RNase A unfolding can be interpreted in terms of a two-state approximation. The far-UV CD spectra also show that the final denatured states of RNase A at high temperatures in the presence of different denaturants including 4.5 M GuHCl are similar to each other but different from the one obtained in 4.5 M GuHCl at 25 degrees C. The concentration dependence of the preferential solvation change delta r23, expressed as the number of cosolvent molecules entering or leaving the solvation shell of the protein upon denaturation and calculated from DSC data, shows the same relative denaturation efficiency of alkylureas as other methods.  相似文献   

2.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   

3.
The two-domain structure of streptokinase (Sk) was demonstrated by scanning calorimetric investigations at neutral pH and low ionic strength. The melting pattern of the protein is composed of two two-state transitions at TtrS1 = 45.9 +/- 0.4 degrees C with delta H1 = 431 +/- 18 kJ/mol, and TtrS2 = 60.1 +/- 1.3 degrees C with delta H2 = 306 +/- 16 kJ/mol. The partial specific heat capacity of native Sk was determined to be Cp = 1.42 +/- 0.17 J/K/g and the denaturational heat capacity change associated with the two transitions, delta Cp1 = 0.21 J/K/g and delta Cp2 = 0.38 J/K/g, respectively. The overall melting pattern of Sk remains almost unchanged at a variety of tested solvent compositions, except at pH 4 (and below) and in the presence of denaturants. The two domains show different susceptibility to urea. It is proposed that the less thermostable domain is located within the N-terminal part (residues 1-230), and the more thermostable one, within the C-terminal region.  相似文献   

4.
The functional activities of proteins are closely related to their molecular structure and understanding their structure-function relationships remains one of the intriguing problems of molecular biology. We investigated structural changes in 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) induced by pH, temperature, salt, urea, guanidine hydrochloride, and coenzyme NADPH binding. At 25 degrees C and within the relatively narrow pH range of 7.0-9.0, 17beta-HSDcl exists in its native conformation as a dimer. This native conformation is thermally stable up to 40 degrees C in this pH range. At 25 degrees C and pH 2.0 in the presence of 150-300 mM NaCl, 17beta-HSDcl forms soluble aggregates enriched in alpha-helical and beta-sheet structures. At higher temperatures and NaCl concentrations, these soluble aggregates start to precipitate. The denaturants urea and guanidine hydrochloride unfold 17beta-HSDcl at concentrations of 1.2 and 0.4 M, respectively. Binding of the coenzyme NADPH to 17beta-HSDcl causes local structural changes that do not significantly affect the thermal stability of this protein.  相似文献   

5.
Prion diseases are associated with conformational conversion of the cellular prion protein, PrPC, into a misfolded form, PrPSc. We have investigated the equilibrium unfolding of the structured domain of recombinant murine prion protein, comprising residues 121-231 (mPrP-(121-231)). The equilibrium unfolding of mPrP-(121-231) by urea monitored by intrinsic fluorescence and circular dichroism (CD) spectroscopies indicated a two-state transition, without detectable folding intermediates. The fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5-disulfonic acid (bis-ANS) binds to native mPrP-(121-231), indicating exposure of hydrophobic domains on the protein surface. Increasing concentrations of urea (up to 4 M) caused the release of bound bis-ANS, whereas changes in intrinsic fluorescence and CD of mPrP took place only above 4 M urea. This indicates the existence of a partially unfolded conformation of mPrP, characterized by loss of bis-ANS binding and preservation of the overall structure of the protein, stabilized at low concentrations of urea. Hydrostatic pressure and low temperatures were also used to stabilize partially folded intermediates that are not detectable in the presence of chemical denaturants. Compression of mPrP to 3.5 kbar at 25 degrees C and pH 7 caused a slight decrease in intrinsic fluorescence emission and an 8-fold increase in bis-ANS fluorescence. Lowering the temperature to -9 degrees C under pressure reversed the decrease in intrinsic fluorescence and caused a marked (approximately 40-fold) increase in bis-ANS fluorescence. The increase in bis-ANS fluorescence at low temperatures was similar to that observed for mPrP at 1 atm at pH 4. These results suggest that pressure-assisted cold denaturation of mPrP stabilizes a partially folded intermediate that is qualitatively similar to the state obtained at acidic pH. Compression of mPrP in the presence of a subdenaturing concentration of urea stabilized another partially folded intermediate, and cold denaturation under these conditions led to complete unfolding of the protein. Possible implications of the existence of such partially folded intermediates in the folding of the prion protein and in the conversion to the PrPSc conformer are discussed.  相似文献   

6.
Varhac R  Antalík M 《Biochemistry》2004,43(12):3564-3569
Optical absorption spectroscopy was used to characterize the acid-induced conformational transition of horse heart ferrocytochrome c in the presence of urea. By using linear extrapolation to zero denaturant concentration, an apparent pK value for denaturation was found to be 0.86 +/- 0.07 at 25 degrees C. Visible absorption spectra in the presence of high urea concentration indicate that the dominant population is a high-spin, five-coordinate form under acidic conditions. Ferricytochrome c, used as a model reference system, shows a linear dependence of pK values versus urea concentration in the range from 0 to 4.1 M. Our data also indicate that even at a pH below 2 the iron-sulfur bond in ferrocytochrome c is present.  相似文献   

7.
The nonpathogenic strain Arthrobacter nicotianae produces two sialidase isoenzymes, NA1 and NA2, with molecular masses of 65 kDa and 54 kDa, respectively, as determined by 10% SDS-polyacrylamide gel electrophoresis. NA1 and NA2 exhibit maximum activities at pH 4 and 5, and both show clear thermal optima at 40 degrees C. They are stable at temperatures up to 50 degrees C. The critical temperatures (T (c) = 50 degrees C and 51 degrees C) for the two isoenzymes were determined by fluorescence spectroscopy and correlate well with the temperatures of melting (T (m) = 49 degrees C and 48 degrees C), determined by CD spectroscopy. The isoenzymes are less stable against denaturation with Gdn.HCl, and the free energy of stabilization in water was calculated to be 7.6 and 8.0 kJ mol(-1), respectively. The specific activity (K (m) value) toward glucomacropeptide as a substrate was calculated to be 0.126 mM for NA1 and 0.083 mM for NA2.  相似文献   

8.
The DNA sequence of the thermostable chitosanase TCH-2 gene from Bacillus coagulans CK108 showed a 843-bp open reading frame that encodes a protein of 280 amino acids with a signal peptide corresponding to 32 kDa in size. The deduced amino acid sequence of the chitosanase from Bacillus coagulans CK108 has 61.6%, 48.0%, and 12.6% identities to those from Bacillus ehemensis, Bacillus circulans, and Bacillus subtilis, respectively. C-Terminal homology analysis shows that the enzyme belongs to the Cluster I group. The size of the gene was similar to those from mesophiles of the Cluster I group with regard to higher preference for codons ending in G or C. The recombinant chitosanase was electrophoretically purified to homogeneity by only two steps with column chromatography. The half-life of the enzyme was 40 min at 90 degrees C. The purified protein was also highly stable, retaining above 50% residual activities during treatment with denaturants such as urea (8 M) and guanidine x HCl (4 M) at 37 degrees C for 30 min. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, producing the tetramer as a major product.  相似文献   

9.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

10.
The stability of Rhodobacter capsulatus bacterioferritin, a 24-meric homopolymer, toward denaturation on variation in pH and temperature, and increasing concentrations of urea and guanidine.HCl was investigated with native PAGE, and CD and fluorescence spectroscopies. With temperature and urea, the wild-type protein denatured without discernible intermediates in the equilibrium experiments, but with guanidine.HCl (Gnd.HCl) one or more intermediate species were apparent at relatively low Gnd.HCl concentrations. Dissociated subunit monomers, or aggregates smaller than 24-mers containing the high alpha-helical content characteristic of the native protein were not obtained at any pH without a high proportion of the 24-mer being present, and taken together with the other denaturation experiments and the construction of stable subunit dimers by site-directed mutagenesis, this observation indicates that folding of the bacterioferritin monomer could be coupled to its association into a dimer. Glu 128 and Glu 135 were replaced by alanine and arginine in a series of mutants to determine their role in stabilizing the 24-meric oligomer. The Glu128Ala, Glu135Ala and Glu135Arg variants retained a 24-meric structure, but the Glu128Ala/Glu135Ala and Glu128Arg/Glu135Arg variants were stable subunit dimers. CD spectra of the Glu135Arg, Glu128Ala/Glu135Ala, and Glu128Arg/Glu135Arg variants showed that they retained the high alpha-helical content of the wild-type protein. The 24-meric Glu135Arg variant was less stable than the wild-type protein (T(m), [Urea](50%) and [Gnd.HCl](50%) of 59 degrees C, 4.9 M and 3.2 M compared with 73 degrees C, approximately 8 M and 4.3 M, respectively), and the dimeric Glu128Arg/Glu135Arg variant was less stable still (T(m), [Urea](50%) and [Gnd.HCl](50%) of 43 degrees C, approximately 3.2 M and 1.8 M, respectively). The differences in stability are roughly additive, indicating that the salt-bridges formed by Glu 128 and Glu 135 in the native oligomer, with Arg 61 and the amino-terminal amine of neighboring subunits, respectively, contribute equally to the stability of the subunit assembly. The additivity and assembly states of the variant proteins suggest that the interactions involving Glu 128 and Glu 135 contribute significantly to stabilizing the 24-mer relative to the subunit dimer.  相似文献   

11.
Limited proteolysis of streptokinase (Sk) by trypsin and thermolysin was performed under various incubation conditions and analysed by polyacrylamide gel electrophoresis. Several fragments (Sk1, Tr27, Tr17, Th26, and Th16) were isolated and characterized further. The N-terminal sequences of Tr27, Tr17, Th26, Th16 and the C-terminal sequences of Tr27 and Th26 were determined by partial sequencing. The evidence available allows the positioning of these fragments within the Sk sequence. Fragment Sk1 is obtained by carefully standardized tryptic digestion of Sk and gel chromatography under non-denaturing conditions. Sk1 is formed by a large polypeptide Ser60-Lys293 and non-covalently bonded smaller polypeptides composed of amino acids from the N-terminal region Ile1-Lys59 of Sk. Fragment Tr27 consists of the large polypeptide Ser60-Lys293 of Sk1, and can be obtained from Sk1 by removal of the smaller N-terminal polypeptides under denaturing conditions. Fragment Th26 is composed of amino acids Phe63-His291. The N-termini of fragments Tr17 and Th16 start with Glu148 and Ile151. From their electrophoretically-determined sizes it can be concluded that they most probably have the same C-terminal amino acids, Lys293 and His291, as fragments Tr27 and Th26, respectively. Secondary structure elements of similar composition were found in all the fragments studied using circular dichroism (c.d.) and infrared (i.r.) measurements. Differential scanning calorimetric (d.s.c.) measurements were performed in order to correlate the sequence regions of Sk to energetic folding units of the protein. Fragments Sk1, Tr27, Th26, Tr17, and Th16 show one melting peak in the temperature range from 42.8 to 46.1 degrees C (thermal unfolding stage). For fragment Sk1, this melting peak can be separated by deconvolution into two transitions at T1 = 46.1 degree C and T2 = 47.3 degrees C with delta H1 = 450 kJ/mol and delta H2 = 219 kJ/mol, respectively. Fragments Tr17 and Th16 show one two-state transition at T = 42.8 degrees C with delta H = 326 kJ/mol.  相似文献   

12.
F G Fiamingo  D W Jung  J O Alben 《Biochemistry》1990,29(19):4627-4633
Ethanol has been observed to cause a perturbation of the catalytic center of the major respiratory protein cytochrome c oxidase. These effects were examined by Fourier transform infrared spectroscopy of carbon monoxide complexes of cytochrome a3Fe and of CuB formed by low-temperature photodissociation of the a3FeCO complex. Carbon monoxide binds to reduced cytochrome oxidase in two major structural forms, alpha and beta, both of which are altered by ethanol. In the absence of ethanol, 15-22% of the total cytochrome oxidase in beef heart mitochondria was observed as beta-forms. Ethanol addition caused a concentration-dependent elimination of the beta-forms with 40% disappearing at 0.05 M (0.23%) ethanol, a concentration that can readily be achieved in the blood of intoxicated individuals. At 0.5 M (2.3%) ethanol and above, almost no beta-forms were detectable. The alpha-CuBCO absorption normally splits into two bands at temperatures below 40 K. This effect was decreased in the presence of ethanol and eliminated by high ethanol concentrations. It appears that ethanol increases the structural fluctuations at the active site of the enzyme, analogous to the effects of increased temperature. There was an 8-10% decrease in the maximum rate of oxygen reduction by mitochondrial cytochrome oxidase in 0.05 M ethanol at 24 degrees C, while higher concentrations of ethanol caused no further inhibition. This is the first demonstration that alpha- and beta-forms of cytochrome c oxidase can be modified by an externally added reagent. Changes in the spectra of alpha-CuBCO in the presence of 50% (v/v) ethylene glycol were quite striking, but variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hyaluronic acid (HA) was hydrolyzed using varying temperatures (40, 60, and 80 degrees C) and acid concentrations (0.0010, 0.010, 0.10, 0.50, 1.0, and 2.0 M HCl). The degradation process was monitored by determination of weight average molecular weight ( M w) by size-exclusion chromatography with online multiangle laser light scattering, refractive index, and intrinsic viscosity detectors (SEC-MALLS-RI-visc) on samples taken out continuously during the hydrolysis. SEC-MALLS-RI-visc showed that the degradation gave narrow molecular weight distributions with polydispersity indexes ( M w/ M n) of 1.3-1.7. Kinetic plots of 1/ M w versus time gave linear plots showing that acid hydrolysis of HA is a random process and that it follows a first order kinetics. For hydrolysis in HCl at 60 and 80 degrees C, it was shown that the kinetic rate constant ( k h) for the degradation depended linearly on the acid concentration. Further, the dependence of temperature on the hydrolysis in 0.1 M HCl was found to give a linear Arrhenius plot (ln k h vs 1/ T), with an activation energy ( E a) of 137 kJ/mol and Arrhenius constant ( A) of 7.86 x 10 (15) h (-1). (1)H NMR spectroscopy was used to characterize the product of extensive hydrolysis (48 h at 60 degrees C in 0.1 M HCl). No indication of de- N-acetylation of the N-acetyl glucosamine (GlcNAc) units or other byproducts were seen. Additionally, a low molecular weight HA was hydrolyzed in 0.1 M DCl for 4 h at 80 degrees C. It was shown that it was primarily the beta-(1-->4)-linkage between GlcNAc and glucuronic acid (GlcA) that was cleaved during hydrolysis at pH < p K a,GlcA. The dependence of the hydrolysis rate constant was further studied as a function of pH between -0.3 and 5. The degradation was found to be random (linear kinetic plots) over the entire pH range studied. Further, the kinetic rate constant was found to depend linearly on pH in the region -0.3 to 3. Above this pH (around the p K a of HA), the kinetic constant decreased more slowly, probably due to either a change in polymer conformation or due to an increased affinity for protons due to the polymer becoming charged as the GlcA units dissociated.  相似文献   

14.
The vibrational Raman spectra of both pure 1-alpha-dimyristoylphosphatidic acid (DMPA) liposomes and DMPA multilayers reconstituted with ferricytochrome c at pH 7 and pH 4, with either sodium or calcium as the cation, are reported as a function of temperature. Multilayers composed of a 1:1 mol ratio DMPA and dimyristoylphosphatidylcholine with perdeuterated acyl chains (DMPC-d54) have also been reconstituted with approximately 10(-4) M ferricytochrome c for Raman spectroscopic observation. Total integrated band intensities and relative peak height intensity ratios, two spectral Raman scattering parameters used to characterize bilayer properties, are sensitive to the presence of both ferricytochrome c and the cation in the reconstituted liposomes. Temperature profiles, derived from the various Raman intensity parameters for the 3,100-2,800 cm-1 lipid acyl chain C-H stretching mode region specifically reflect bilayer perturbations due to the interactions of ferricytochrome c. At pH 4 the calcium DMPA multilamellar gel to liquid crystalline phase transition temperatures Tm, defined by either the C-H stretching mode I2850/I2880 and I2935/I2880 peak height intensity ratios, are 58.5 +/- 0.5 degrees C and 60.0 +/- 0.3 degrees C, respectively. This difference in Tm's resolves the phase transition process into first an expansion of the lipid lattice and then a melting of the lipid acyl chains. At pH 7 the calcium DMPA liposomes show no distinct phase transition characteristics below 75 degrees C. For sodium DMPA liposomes reconstituted with ferricytochrome c at either pH 4.0 or pH 7.0, spontaneous Raman spectra show altered lipid structures at temperatures above 40 degrees C. Resonance Raman spectra indicate that ferricytochrome c reconstituted in either calcium or sodium DMPA liposomes changes irreversibly above Tm. For either the binary lipid or ternary lipid-protein systems reconstituted with DMPC-d54, linewidth parameters of the DMPC-d54 acyl chain CD2 symmetric stretching modes at 2,103 cm-1 provide a sensitive measure of the conformational and dynamic properties of the perdeuterated lipid component, while the 3,000 cm-1 C-H spectral region reflects the bilayer characteristics of the DMPA species in the complex. Although calcium clearly induces a lateral phase separation in the DMPA/DMPC-d54 system at pH 7.5 (Kouaouci, R., J.R. Silvius, I. Grah, and M. Pezolet. 1985. Biochemistry. 24:7132-7140), no distinct lateral segregation of the lipid components is observed in the mixed DMPA/DMPC-d54 lipid system in the presence of either ferricytochrome c or the sodium and calcium cations at pH 4.0.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
1H-n.m.r. and 13C-n.m.r. spectroscopy of horse cytochrome c and 1H-n.m.r. spectroscopy of the lysine-modified proteins N epsilon-acetimidyl-, N epsilon-amidino-, N epsilon-trifluoroacetyl- and N epsilon-maleyl-cytochrome c have shown that, although the lysine modifications do not greatly perturb the protein structure at pH7 and 27 degrees C, at higher temperature or at alkaline pH some parts of the structure are markedly perturbed. At pH7 and 27 degrees C the region of the protein about Ile-57 is affected in all the modified proteins, though not all to the same degree. N epsilon-Maleylation most seriously affects the protein structure, and the fully maleylated protein is readily unfolded. At 27 degrees C all four of the tyrosine residues of native horse cytochrome c have pKa values above 11, but in N epsilon-acetimidyl-cytochrome c the pKa of one tyrosine residue is 10.2.  相似文献   

16.
The effects of various concentrations of urea and guanidine hydrochloride on enzyme activity and on subunit association were determined. Incubation of thymidylate synthetase with buffered solutions of 3M to 3.5M guanidine hydrochloride or 5 M to 6 M urea resulted in the loss of about 90% of the enzyme activity. Under these denaturing conditions a red shift of the fluorescence emission maximum from 340 nm to 351 nm was observed together with a significant decrease in the relative fluorescence intensity of the protein. Studies at both 4 degrees C and 25 degrees C indicated that the enzyme was in the dimer form in 2 M guanidine hydrochloride but was dissociated into monomers in concentrations of this denaturant of 3 M and above. Although only monomeric species were evident at 4 degrees C in 6 M urea, at 25 25 degrees C this denaturant caused protein aggregation which increased with decreasing phosphate buffer concentration. Enzyme (5 mg/ml) in 0.5 M potassium phosphate buffer, pH 6.8, containing 4 M guanidine hydrochloride gave a minimum S20, w value of 1.22S at 25 degrees C. Sedimentation behavior of the native enzyme in the range of 5 to 20 mg/ml was only slightly concentration-dependent (4.28 S to 4.86 S) but extensive aggregation occurred above 20 mg/ml.  相似文献   

17.
Bacillus anthracis makes highly stable, heat-resistant spores which remain viable for decades. Effect of various stress conditions on sporulation in B. anthracis was studied in nutrient-deprived and sporulation medium adjusted to various pH and temperatures. The results revealed that sporulation efficiency was dependent on conditions prevailing during sporulation. Sporulation occurred earlier in culture sporulating at alkaline pH or in PBS than control. Spores formed in PBS were highly sensitive towards spore denaturants whereas, those formed at 45°C were highly resistant. The decimal reduction time (D-10 time) of the spores formed at 45°C by wet heat, 2 M HCl, 2 M NaOH and 2 M H2O2 was higher than the respective D-10 time for the spores formed in PBS. The dipicolinic acid (DPA) content and germination efficiency was highest in spores formed at 45°C. Since DPA is related to spore sensitivity towards heat and chemicals, the increased DPA content of spores prepared at 45°C may be responsible for increased resistance to wet heat and other denaturants. The size of spores formed at 45°C was smallest amongst all. The study reveals that temperature, pH and nutrient availability during sporulation affect properties of B. anthracis spores.  相似文献   

18.
The conformation of porcine serum ferric transferrin (Tf) and its stability against denaturation were studied by circular dichroism. Tf was estimated to have 19-24% alpha-helix and 50-55% beta-sheet based on the methods of Chang et al. (Chang, C.T., Wu, C.-S.C., & Yang, J.T., 1978, Anal. Biochem. 91, 13-31) and Provencher and Glöckner (Provencher, S.W. & Glöckner, J., 1981, Biochemistry 20, 33-37). Removal of the bound ferric ions (apo-Tf) did not alter the overall conformation, but there were subtle changes in local conformation based on its near-UV CD spectrum. The Tfs were stable between pH 3.5 and 11. Denaturation by guanidine hydrochloride (Gu-HCl) showed two transitions at 1.6 and 3.4 M denaturant. The process of denaturation by acid and base was reversible, whereas that by Gu-HCl was partially reversible. The irreversible thermal unfolding of Tfs began at temperatures above 60 degrees C and was not complete even at 80 degrees C. The bound irons (based on absorbance at 460 nm) were completely released at pH < 4 or in Gu-HCl solution above 1.7 M, when the protein began to unfold, but they remained intact in neutral solution even at 85 degrees C. The NH2- and COOH-terminal halves of the Tf molecule obtained by limited trypsin digestion had CD spectra similar to the spectrum of native Tf, and the COOH-terminal fragment had more stable secondary structure than the NH2-terminal fragment.  相似文献   

19.
Unfolding/folding transitions of recombinant human interferon-gamma (hIFNgamma) in urea and guanidine chloride (Gn.HCl) solutions were studied by fluorescence spectroscopy. At pH 7.4 Gn.HCl was a much more efficient denaturant (midpoint of unfolding C* = 1.1 M and deltaG0 = 13.4 kJ/mol) than urea (C* = 2.8 M and deltaG0 = 11.7 kJ/mol). The close deltaG0 values indicate that the contribution of electrostatic interactions to the stability of hIFNgamma is insignificant. Both the pH dependence of the fluorescence intensity and the unfolding experiments in urea at variable pH showed that hIFNgamma remains native in the pH range of 4.8-9.5. Using two quenchers, iodide and acrylamide, and applying the Stern-Volmer equation, a cluster of acidic groups situated in close proximity to the single tryptophan residue was identified. Based on the denaturation experiments at different pH values and on our earlier calculations of the electrostatic interactions in hIFNgamma, we assume that the protonation of Asp63 causes conformational changes having a substantial impact on the stability of hIFNgamma.  相似文献   

20.
Circular dichroism was used to monitor the thermal unfolding of ribonuclease A in 50% aqueous methanol. The spectrum of the protein at temperatures below -10 degrees C (pH* 3.0) was essentially identical to that of native ribonuclease A in aqueous solution. The spectrum of the thermally denatured material above 70 degrees C revealed some residual secondary structure in comparison to protein unfolded by 5 M Gdn.HCl at 70 degrees C in the presence or absence of methanol. The spectra as a function of temperature were deconvoluted to determine the contributions of different types of secondary structure. The position of the thermal unfolding transition as monitored by alpha-helix, with a midpoint at 38 degrees C, was at a much higher temperature than that monitored by beta-sheet, 26 degrees C, which also corresponded to that observed by delta A286, tyrosine fluorescence and hydrodynamic radius (from light scattering measurements). Thus, the loss of beta-sheet structure is decoupled from that of alpha-helix, suggesting a step-wise unfolding of the protein. The transition observed for loss of alpha-helix coincides with the previously measured transition for His-12 by NMR from a partially folded state to the unfolded state, suggesting that the unfolding of the N-terminal helix in RNase A is lost after unfolding of the core beta-sheet during thermal denaturation. The thermally denatured protein was relatively compact, as measured by dynamic light scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号