首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of alcohol dehydrogenase (ADH) from Horse Liver inside porous supports promotes a dramatic stabilization of the enzyme against inactivation by air bubbles in stirred tank reactors. Moreover, immobilization of ADH on glyoxyl-agarose promotes additional stabilization against any distorting agent (pH, temperature, organic solvents, etc.). Stabilization is higher when using highly activated supports, they are able to immobilize both subunits of the enzyme. The best glyoxyl derivatives are much more stable than conventional ADH derivatives (e.g., immobilized on BrCN activated agarose). For example, glyoxyl immobilized ADH preserved full activity after incubation at pH 5.0 for 20h at room temperature and conventional derivatives (as well as the soluble enzyme) preserved less than 50% of activity after incubation under the same conditions. Moreover, glyoxyl derivatives are more than 10 times more stable than BrCN derivatives when incubated in 50% acetone at pH 7.0. Multipoint covalent immobilization, in addition to multisubunit immobilization, seems to play an important stabilizing role against distorting agents. In spite of these interesting stabilization factors, immobilization hardly promotes losses of catalytic activity (keeping values near to 90%). This immobilized preparation is able to keep good activity using dextran-NAD(+). In this way, ADH glyoxyl immobilized preparation seems to be suitable to be used as cofactor-recycling enzyme-system in interesting NAD(+)-mediated oxidation processes, catalyzed by other immobilized dehydrogenases in stirred tank reactors.  相似文献   

2.
Covalent immobilization of cyclodextrin glycosyltransferase on glyoxyl-agarose beads promotes a very high stabilization of the enzyme against any distorting agent (temperature, pH, organic solvents). For example, the optimized immobilized preparation preserves 90% of initial activity when incubated for 22 h in 30% ethanol at pH 7 and 40 degrees C. Other immobilized preparations (obtained via other immobilization protocols) exhibit less than 10% of activity after incubation under similar conditions. Optimized glyoxyl-agarose immobilized preparation expressed a high percentage of catalytic activity (70%). Immobilization using any technique prevents enzyme inactivation by air bubbles during strong stirring of the enzyme. Stabilization of the enzyme immobilized on glyoxyl-agarose is higher when using the highest activation degree (75 micromol of glyoxyl per milliliter of support) as well as when performing long enzyme-support incubation times (4 h) at room temperature. Multipoint covalent immobilization seems to be responsible for this very high stabilization associated to the immobilization process on highly activated glyoxyl-agarose. The stabilization of the enzyme against the inactivation by ethanol seems to be interesting to improve cyclodextrin production: ethanol strongly inhibits the enzymatic degradation of cyclodextrin while hardly affecting the cyclodextrin production rate of the immobilized-stabilized preparation.  相似文献   

3.
Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose   总被引:1,自引:0,他引:1  
This paper presents stable Alcalase-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced by immobilizing-stabilizing Alcalase on cross-linked 10% agarose beads, using low and high activation grades of the support and different immobilization times. The Alcalase glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde and CNBr as activation reactants. The performance of derivatives in the hydrolysis of casein was also tested. At pH 8.0 and 50 degrees C, Alcalase derivatives produced with 1 h of immobilization time on agarose activated with glutaraldehyde, CNBr, and low and high glyoxyl groups concentration presented half-lives of ca. 10, 29, 60, and 164 h, respectively. More extensive immobilization monotonically led to higher stabilization. The most stabilized Alcalase-glyoxyl derivative was produced using 96 h of immobilization time and high activation grade of the support. It presented half-life of ca. 23 h, at pH 8.0 and 63 degrees C and was ca. 500-fold more stable than the soluble enzyme. Thermal inactivation of all derivatives followed a single-step non-first-order kinetics. The most stable derivative presented ca. 54% of the activity of the soluble enzyme for the hydrolysis of casein and of the small substrate Boc-Ala-ONp. This behavior suggests that the decrease in activity was due to enzyme distortion but not to wrong orientation. The hydrolysis degree of casein at 80 degrees C with the most stabilized enzyme was 2-fold higher than that achieved using soluble enzyme, as a result of the thermal inactivation of the latter. Therefore, the high stability of the new Alcalase-glyoxyl derivative allows the design of continuous processes to hydrolyze proteins at temperatures that avoid microbial growth.  相似文献   

4.
The genome of Thermus thermophilus contains two genes encoding putative glutamate dehydrogenases. One of these genes (TTC1211) was cloned and overexpressed in Escherichia coli. The purified enzyme was a trimer that catalyzed the oxidation of glutamate to alpha-ketoglutarate and ammonia with either NAD+ or NADP+ as cofactors. The enzyme was also able to catalyze the inverse reductive reaction. The thermostability of the enzyme at neutral pH was very high even at 70 degrees C, but at acidic pH values, the dissociation of enzyme subunits produced the rapid enzyme inactivation even at 25 degrees C. The immobilization of the enzyme on glyoxyl agarose permitted to greatly increase the enzyme stability under all conditions studied. It was found that the multimeric structure of the enzyme was stabilized by the immobilization (enzyme subunits could be not desorbed from the support by boiling it in the presence of sodium dodecyl sulfate). This makes the enzyme very stable at pH 4 (e.g., the enzyme activity did not decrease after 12 h at 45 degrees C) and even improved the enzyme stability at neutral pH values. This immobilized enzyme can be of great interest as a biosensor or as a biocatalyst to regenerate both reduced and oxidized cofactors.  相似文献   

5.
An evaluation of the stability of several forms (including soluble and two immobilized preparations) of d-amino acid oxidases from Trigonopsis variabilis (TvDAAO) and Rhodotorula gracilis (RgDAAO) is presented here. Initially, both soluble enzymes become inactivated via subunit dissociation, and the most thermostable enzyme seemed to be TvDAAO, which was 3-4 times more stable than RgDAAO at a protein concentration of 30 microg/mL. Immobilization on poorly activated supports was unable to stabilize the enzyme, while highly activated supports improved the enzyme stability. Better results were obtained when using highly activated glyoxyl agarose supports than when glutaraldehyde was used. Thus, multisubunit immobilization on highly activated glyoxyl agarose dramatically improved the stability of RgDAAO (by ca. 15,000-fold) while only marginally improving the stability of TvDAAO (by 15-20-fold), at a protein concentration of 6.7 microg/mL. Therefore, the optimal immobilized RgDAAO was much more stable than the optimal immobilized TvDAAO at this enzyme concentration. The lower stabilization effect on TvDAAO was associated with the inactivation of this enzyme by FAD dissociation that was not prevented by immobilization. Finally, nonstabilized RgDAAO was marginally more stable in the presence of H(2)O(2) than TvDAAO, but after stabilization by multisubunit immobilization, its stability became 10 times higher than that of TvDAAO. Therefore, the most stable DAAO preparation and the optimal choice for an industrial application seems to be RgDAAO immobilized on glyoxyl agarose.  相似文献   

6.
Alcalase was scarcely immobilized on monoaminoethyl-N-aminoethyl (MANAE)-agarose beads at different pH values (<20% at pH 7). The enzyme did not immobilize on MANAE-agarose activated with glutaraldehyde at high ionic strength, suggesting a low reactivity of the enzyme with the support functionalized in this manner. However, the immobilization is relatively rapid when using low ionic strength and glutaraldehyde activated support. Using these conditions, the enzyme was immobilized at pH 5, 7, and 9, and in all cases, the activity vs. Boc-Ala-ONp decreased to around 50%. However, the activity vs. casein greatly depends on the immobilization pH, while at pH 5 it is also 50%, at pH 7 it is around 200%, and at pH 9 it is around 140%. All immobilized enzymes were significantly stabilized compared to the free enzyme when inactivated at pH 5, 7, or 9. The highest stability was always observed when the enzyme was immobilized at pH 9, and the worst stability occurred when the enzyme was immobilized at pH 5, in agreement with the reactivity of the amino groups of the enzyme. Stabilization was lower for the three preparations when the inactivation was performed at pH 5. Thus, this is a practical example on how the cooperative effect of ion exchange and covalent immobilization may be used to immobilize an enzyme when only one independent cause of immobilization is unable to immobilize the enzyme, while adjusting the immobilization pH leads to very different properties of the final immobilized enzyme preparation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2768, 2019.  相似文献   

7.
An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity.  相似文献   

8.
Multimeric catalase from Aspergillus niger was immobilized on CNBr activated agarose, increasing the enzyme stability. However, it was found that some enzyme subunits could be desorbed to the supernatant after boiling the enzyme preparation in the presence of SDS or during thermal inactivation. Moreover, a positive enzyme concentration-enzyme stability correlation was detected in the immobilized preparation. This suggested the existence of some dissociation mechanism as a first step in the enzyme inactivation. The treatment of the immobilized enzyme with aldehyde–dextran permitted to fully stabilize its multimeric structure, but even this preparation exhibited an enzyme concentration-stability correlation. The presence of EDTA reduced the enzyme stability, suggesting that some cation could be involved in enzyme stability. It was found that 10 mM Zn2+ increased the enzyme stability of this immobilized–stabilized preparation. Now, the dilution of the biocatalyst did not produce a reduction in the enzyme stability.Thus, we have prepared an immobilized enzyme that does not release any subunit to the medium even after inactivation, and found that Zn2+ has a very positive effect on the stability of this immobilized–stabilized enzyme.  相似文献   

9.
Summary The effect of several parameters (pH, time of reaction, temperature, enzyme concentration) on trypsin immobilization onto glutaraldehyde-activated amine-Spherosil was investigated. This activated support could be stored over long periods of time without any important loss of capacity for trypsin coupling. When increasing the amount of trypsin bound to the carrier, enzymatic activity shows an optimal value, beyond which an augmentation of Spherosil enzyme content results in a lowered activity. The influence of the number of available reactive aldehyde groups on silica was investigated by coupling L-lysine to activated support either prior to or simulataneously with trypsin immobilization. In both cases, the activity of trypsin derivatives is decreased when L-lysine concentration is increased, yet the activity of trypsin derivatives is never equal to zero, even in presence of a large excess of L-lysine. This suggests the presence of two types of reactive groups on the activated support.  相似文献   

10.
Highly activated glyoxyl-supports rapidly immobilize proteins at pH 10 (where the -amino groups of the Lys groups of the protein surface are very reactive), and stabilize them by multipoint covalent attachment. However, they do not immobilize proteins at pH 8. This paper shows that the enzyme immobilization at this mild pH value is possible by incubation of the enzymes in the presence of different thiolated compounds (dithiothreitol, DTT; was selected as optimal reagent). The thiolated compounds (even the not reducing ones) stabilized the imino bonds formed at pH 8 between the aldehydes in the support and the amino groups of the protein. However, thiolated compounds are unable to reduce the imino bonds or the aldehyde groups and a final reduction step (e.g., using sodium borohydride) was always necessary. After enzyme immobilization through the most reactive amino group of the protein, the further incubation of this immobilized enzyme at pH 10 would improve the reactivity of the -amino groups of the Lys residues of the protein surface. Then, an intense multipoint covalent reaction of the enzyme with the dense layer of glyoxyl groups in the support could be obtained, increasing the stability of the immobilized enzyme. Using three different industrially relevant enzymes (penicillin G acylase from Escherichia coli (PGA), lipase from Bacillus thermocatenulatus (BTL2) and glutaryl acylase from Pseudomonas sp. (GA)), new immobilized-stabilized biocatalysts of the enzymes were produced. After reduction, the preparations incubated at pH 10 were more stable than those that were only immobilized and reduced at pH 8. In the case of the PGA, this preparation was even 4–5-fold more stable than those obtained by direct immobilization at pH 10 (around 40,000–50,000-fold more stable than the soluble enzyme).  相似文献   

11.
Use of lectins as ligands for the immobilization and stabilization of glycoenzymes has immense application in enzyme research and industry. But their widespread use could be limited by the high cost of their production. In the present study preparation of a novel and inexpensive lectin support for use in the immobilization of glycoenzymes containing mannose or glucose residues in their carbohydrate moiety has been described. Cajanus cajan lectin (CCL) coupled covalently to cyanogen bromide activated Seralose 4B could readily bind enzymes such as invertase, glucoamylase and glucose oxidase. The immobilized and glutaraldehyde crosslinked preparations of invertase exhibited high resistance to inactivation upon exposure to enhanced temperature, pH, denaturants and proteolysis. Binding of invertase to CCL-Seralose was however found to be readily reversible in the presence of 1.0 M methyl alpha-D mannopyranoside. In a laboratory scale column reactor the CCL-Seralose bound invertase was stable for a month and retained more than 80% of its initial activity even after 60 days of storage at 4 degrees C. CCL-Seralose bound invertase exhibited marked stability towards temperature, pH changes and denaturants suggesting its potential to be used as an excellent support for the immobilization of other glycoenzymes as well.  相似文献   

12.
Bovine liver catalase was immobilized on different supports. The tetrameric nature of this enzyme was found to cause its rapid inactivation in diluted conditions due to subunit dissociation, a fact that may rule out its industrial use. Multi-subunit immobilization using highly activated glyoxyl agarose was not enough to involve all enzyme subunits. In fact, washing the derivative produced a strong decrease in the enzyme activity. Further cross-linking of previously immobilized enzyme with tailor-made dextran-aldehyde permitted the multimeric structure to be fully stabilized using either multisubunit preparations immobilized onto highly activated glyoxyl-agarose support or one subunit enzymes immobilized onto poorly activated glyoxyl-agarose. The highest stability of the final biocatalyst was observed using the multisubunit immobilized derivative cross-linked with dextran-aldehyde. The optimal derivative retained around 60% of the immobilized activity, did not release any enzyme subunits after boiling in the presence of SDS, and did not lose activity during washing, and its stability did not depend on the dilution. This derivative was used for 10 cycles in the destruction of 10 mM hydrogen peroxide without any decrease in the enzyme activity.  相似文献   

13.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

14.

Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5′-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 °C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.

  相似文献   

15.
The preparation of novel immobilized and stabilized derivatives of trypsin is reported here. The new derivatives preserved 80% of the initial catalytic activity toward synthetic substrates [benzoyl-arginine p-nitroanilide (BAPNA)] and were 50,000-fold more thermally stable than the diluted soluble enzyme in the absence of autolysis. Trypsin was immobilized on highly activated glyoxyl-Sepharose following a two-step immobilization strategy: (a) first, a multipoint covalent immobilization at pH 8.5 that only involves low pK(a) amino groups (e.g., those derived from the activation of trypsin from trypsinogen) is performed and (b) next, an additional alkaline incubation at pH 10 is performed to favor an intense, additional multipoint immobilization between the high concentration of proximate aldehyde groups on the support surface and the high pK(a) amino groups at the enzyme surface region that participated in the first immobilization step. Interestingly, the new, highly stable trypsin derivatives were also much more active in the proteolysis of high molecular weight proteins when compared with a nonstabilized derivative prepared on CNBr-activated Sepharose. In fact, all the proteins contained a cheese whey extract had been completely proteolyzed after 6 h at pH 9 and 50°C, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Under these experimental conditions, the immobilized biocatalysts preserve more than 90% of their initial activity after 20 days. Analysis of the three-dimensional (3D) structure of the best immobilized trypsin derivative showed a surface region containing two amino terminal groups and five lysine (Lys) residues that may be responsible for this novel and interesting immobilization and stabilization. Moreover, this region is relatively far from the active site of the enzyme, which could explain the good results obtained for the hydrolysis of high-molecular weight proteins.  相似文献   

16.
Featuring unique planar structure, large surface area and biocompatibility, graphene oxide (GO) has been widely taken as an ideal scaffold for the immobilization of various enzymes. In this regard, nickel‐coordinated graphene oxide composites (GO‐Ni) were prepared as novel supporters for the immobilization of formate dehydrogenase. The catalytic activity, stability and morphology were studied. Compared with GO, the enzyme loading capacity of GO‐Ni was enhanced by 5.2‐fold, besides the immobilized enzyme GO‐Ni‐FDH exhibited better thermostability, storage stability and reuse stability than GO‐FDH. GO‐Ni‐FDH retained 40.9% of its initial activity after 3 h at 60°C, and retained 31.4% of its initial relative activity after 20 days’ storage at 4°C. After eight times usages, GO‐Ni‐FDH maintained 63.8% of its initial activity. Mechanism insights of the multiple interactions of enzyme with the GO‐Ni were studied, considering coordination bonds, hydrogen bonds, electrostatic forces, coordination bonds, and etc. A practical and simple immobilization strategy by metal ions coordination for multimeric dehydrogenase was developed.  相似文献   

17.
Cellobiase was coupled to a dialdehyde dextran by reductive alkylation in the presence of sodium cyanoborohydride. The resulting conjugate, obtained without loss of enzymic activity, presents properties of thermoresistance largely superior to those of native enzyme: the rate of inactivation is reduced compared to that of native enzyme and its optimal temperature of activity is 70-75 degrees C instead of 65 degrees C. Finally the conjugate presents increased longevity when subjected to experiments of operational stability; its hydrolytic activity is maintained at 60 degrees C in a 10% (w/v) cellobiose solution for more than 100 h whereas the native enzyme is inactivated after 45 h. The cellobiase-dextran conjugate was immobilized by covalent coupling on aminated silica by reductive alkylation in the presence of NaBH(3)CN. The characteristics of thermoresistance of this stabilized and immobilized conjugate were studied and compared to those of a preparation of native cellobiase immobilized on a silica support activated with glutaraldehyde. Analysis of the thermoresistance of these two cellobiase preparations clearly shows that immobilization has maintained and even enhanced their properties. In particular, the operational stability, measured at 68 degrees C on 10% (w/v) cellobiose shows an increased longevity of the stabilized and immobilized enzyme for 120 h compared to 60 h for the native immobilized enzyme. Two successive incubations of these cellobiase derivatives show that it is possible to obtain 2.5 times more glucose with the stabilized-immobilized enzyme than with the immobilized preparation. The procedure described above enables us to prepare a thermostabilized immobilized cellobiase.  相似文献   

18.
Novel grafted agar disks were prepared for the covalent immobilization of β‐D‐galactosidase (β‐gal). The agar disks were activated through reacting with ethylenediamine or different molecular weights of Polyethyleneimine (PEI), followed by glutaraldehyde (GA). The modification of the agar gel and the binding of the enzyme were verified by Fourier Transform Infrared (FTIR) and elemental analysis. Moreover, the agar's activation process was optimized, and the amount of immobilized enzyme increased 3.44 folds, from 38.1 to 131.2 U/g gel, during the course of the optimization process. The immobilization of β‐gal onto the activated agar disks caused its optimum temperature to increase from 45°C to 45–55°C. The optimum pH of the enzyme was also shifted towards the acidic side (3.6–4.6) after its immobilization. Additionally, the Michaelis‐Menten constant (Km) increased for the immobilized β‐gal as compared to its free counterpart whereas the maximum reaction rate (Vmax) decreased. The immobilized enzyme was also shown to retain 92.99% of its initial activity after being used for 15 consecutive times. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 675–684, 2015.  相似文献   

19.
Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.  相似文献   

20.
Invertase from S. cerevisiae has been immobilized by ionic adsorption on Sepabeads fully coated with PEI. The enzyme was strongly adsorbed on the support (no desorption of the invertase was found under conditions in which all of the enzyme was released from conventional anionic exchanger supports (e.g., DEAE-agarose)). Nevertheless, the enzyme could still be desorbed after its inactivation, and new fresh enzyme could be adsorbed on the supports without detrimental effects on enzyme loading. This is a multimeric enzyme, its minimal oligomerization active state being the dimer, but under certain conditions of pH and concentration it may give larger multimers. Very interestingly, results suggested that the adsorption of the enzyme on this large and flexible polymeric bed was able to freeze some of the different oligomeric structures of the enzyme. Thus, we have found that the enzyme immobilized at certain pH values (pH 8.5) and high enzyme concentration, in which the main enzyme structure is the tetramer, was more stable than immobilized preparations produced in conditions under which oligomerization was not favorable (dimers at low enzyme concentration) or it was too high (e.g., hexamers-octamers at low pH value). The optimal enzyme preparation remained fully active after a 15-day incubation at 50 degrees C and pH 4.5 (conditions of standard industrial use) and presented an optimal temperature approximately 5 degrees C higher than that of soluble enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号