首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

2.
We grew water hyacinth [Eichhornia crassipes (Mart.) Solms]for 60 days in a greenhouse under natural light and in a controlledenvironment room at 31/25?C day/night temperatures and 90, 320and 750/µEm–2sec–1. We then determined maximumphotosynthetic rates in 21% and 1% oxygen, stomatal diffusionresistances, contents of chlorophyll and soluble protein, andthe size and density of the photosynthetic units (PSU) in representativeleaves from the four treatments. In air containing 21% oxygen,maximum photosynthetic rates were 14, 27 and 29 mg CO2 dm–2hr–1for plants grown in artificial light at 90, 320 and 750µEm–2sec–1,respectively. Plants grown in natural light (maximum of 2000µEm–2sec–1) had maximum photosynthetic ratesof 34 mg CO2 dm–2hr–1. In all treatments, photosyntheticrates in 1% oxygen were about 50% greater than rates in normalair, indicating the presence of photorespiration in water hyacinth.There was no apparent relationship between maximum photosyntheticrate per unit leaf area and stomatal conductance, chlorophyllcontent per unit area, or PSU density per unit area. However,the higher maximum photosynthetic rates were associated withgreater mesophyll conductances, specific leaf weights and proteincontents per unit area. When plants grown at 90µEm–2sec–1for 120 days were transferred to 750µEm–2sec–1for 5 days, only young leaves that were just beginning to expandat the time of transfer exhibited adaptation to the higher irradiance.The 40% increase in light-saturated photosynthetic rate in theseyoung leaves was associated with increases in mesophyll conductance,soluble protein content per unit area, and specific leaf weight. 1 Mississippi Agricultural and Forestry Experiment Station cooperating. (Received July 19, 1978; )  相似文献   

3.
KAMALUDDIN  M.; GRACE  J. 《Annals of botany》1992,69(6):557-562
Acclimation of fully developed leaves of Bischofia javanicaBlume to shadelight was examined. Seedlings were grown undersimulated daylight (1000 µmol m–2 s–1), thentransferred to a simulated shadelight (40 µmol m–2s–1). When a high-light leaf was transferred to low light, large negativenet photosynthetic rates (Pm) were recorded. This decrease wasrapid, but within 7 d the rate increased and became equal tothe low-light control leaf. These changes in photosynthesisdid not follow the pattern of changes in stomatal conductance(gs). Transfer to the low light resulted in a dramatic decreasein leaf weight per unit area (Lw), and most of the decreasesin Lw occurred within 3 d of transfer when the Pm of the transferredleaf was well below that of the low-light control leaf. There was a significant decrease in chlorophyll a in the transferredleaf without an appreciable change in chlorophyll b resultingin a large decrease in the chlorophyll a to chlorophyll b ratio.Leaf chlorophylls per unit area were higher in the transferredleaf than the low-light control leaf. Maximum photosyntheticrate in the transferred leaf was decreased by 40% compared tothat for the high-control leaf, but was almost at the same extenthigher than the low-light control leaf The results are discussedin the context of carbon gain capacity of its seedlings underlight-limiting forest understorey habitats. Bischofia, chlorophylls, light, photosynthesis, shade acclimation, tree seedlings, tropical tree  相似文献   

4.
Effects of Nitrogen Fertilizer on Growth and Yield of Spring Wheat   总被引:1,自引:0,他引:1  
Nine amounts of nitrogen fertilizer, ranging from 0 to 200 kgN ha–1, were applied to spring wheat cv. Kleiber in the3 years 1972-1974. In 1972 grain dry weight with 125 kg N ha–1or more was 100 g m–2 (23 per cent) greater than withoutnitrogen. Grain yield was unaffected by nitrogen in the otheryears. Leaf area at and after anthesis was increased throughoutthe range of nitrogen tested, most in 1972 and least in 1973.Consequently, the addition of 200 kg N ha–1 decreasedthe amount of grain produced per unit of leaf area by approximately25 per cent in all years. The dry weight of leaves and stems at anthesis and maturitywas increased by nitrogen in all years, similarly to leaf area.However, the change in stem dry weight between anthesis andmaturity was not affected by nitrogen; stems increased in dryweight for about 20 days after anthesis and then decreased tovalues similar to those at anthesis. The uptake of CO2 per unit area of flag leaf or second leaf(leaf below the flag leaf) was slightly decreased by nitrogenwhen the increase in leaf area caused by nitrogen appreciablydecreased the light intensity at the surface of these leaves.In spite of such decreases the CO2 absorbed by flag and secondleaves per unit area of land was always increased by nitrogen,and relatively more than was grain yield. It is suggested that increases in respiratory loss of CO2 withincreasing nitrogen fertilizer may explain why nitrogen increasedvegetative growth and leaf area relatively more than grain yield.  相似文献   

5.
The effects of nitrate supply on the composition (cell numbers,protein and chlorophyll contents) of flag leaves of winter wheatgrown with two amounts of N fertilizer and of spring wheat grownin the glasshouse under controlled nitrate supply are describedand related to photosynthesis. Nitrogen deficiency decreasedthe size of leaves, mainly by reducing cell number and, to asmaller extent, by decreasing cell volume. Protein content perunit leaf area, per cell and per unit cell volume was largerwith abundant N. Total soluble protein, ribulose bisphosphatecarboxylase-oxygenase (RuBPc-o) protein and chlorophyll changedin proportion irrespective of nitrogen supply and leaf age.Photosynthesis per unit area of flag leaf and carboxylationefficiency in both winter and spring wheat were proportionalto the amount of total soluble protein up to 7.0 g m–2and to the amount of RuBPc-o protein up to 4.0 g m–2.However, photosynthesis did not increase in proportion to theamount of total soluble or RuBPc-o protein above these amounts.In young leaves with a high protein content the measured ratesof photosynthesis were lower than expected from the amount andactivity of RuBPc-o. Carboxylation per unit of RuBPc-o protein,measured in vitro, was slightly greater in N-deficient leavesof winter wheat but not of spring wheat. RuBPc-o activity perunit of RuBPc-o protein was similar in winter and spring wheatleaves and remained approximately constant with age, but increasedin leaves showing advanced senescence. RuBPc-o protein fromN-deficient leaves migrated faster on polyacrylamide gels thanprotein from leaves with high N content. Regulation of the rateof photosynthesis in leaves and chloroplasts with a high proteincontent is discussed. The conductance of the cell to the fluxof CO2 from intercellular spaces to RuBPc-o active sites iscalculated, from cell surface areas and CO2 fluxes, to decreasethe CO2 partial pressure at the active site by less than 0.8Pa at an internal CO2 partial pressure of 34 Pa. Thus the decreasein partial pressure of CO2 is insufficient to account for theinefficiency of RuBPc-o in vivo at high protein contents. Otherlimitations to the rate of photosynthesis are considered. Key words: Wheat, photosynthesis, nitrogen, ribulose, bisphosphate carboxylase  相似文献   

6.
The effect of tetraploidy on leaf characteristics and net gasexchange was studied in diploid (2x ) and autotetraploid (4x) ‘Valencia’ sweet orange (Citrus sinensis (L.)Osb.) and ‘Femminello’ lemon (Citrus limon (L.)Burm. f.) leaves. Comparisons between ploidy levels were madeunder high irradiance (I) in a growth chamber or low total Iin a glasshouse. Tetraploids of both species had thicker leaves,larger mesophyll cell volume and lower light transmittance thandiploids regardless of growth I. Mesophyll surface area perunit leaf area of 2x leaves was 5–15% greater than on4x leaves. Leaf thickness and mesophyll cell volume were greaterin high I leaves than low I leaves. In high I, average leafarea was similar for 2x and 4x leaves, whereas in low I it was30% greater in 4x than in 2x leaves. Nitrogen and chlorophyllconcentration per cell increased with ploidy level in both growthconditions. The ratio of chlorophyll a:b was 25% greater in2x than in 4x leaves. When net CO2assimilation rate (ACO2) wasbased on leaf area, 4x orange leaves had 24–35% lowerACO2than their diploids. There were no significant differencesin ACO2between 2x and 4x orange or lemon leaves when expressedon a per cell basis. Overall, lower ACO2per unit leaf area oftetraploids was related to increase in leaf thickness, largermesophyll cell volume, the decrease in mesophyll area exposedto internal air spaces, and the lower ratio between cell surfaceto cell volume. Such changes probably increased the resistanceto CO2diffusion to the site of carboyxlation in the chloroplasts. Cell volume; chlorophyll; irradiance; leaf thickness; nitrogen; photosynthesis; ploidy; Citrus limon ; C. sinensis ; ‘Valencia’ sweet orange; ‘Femminello’ lemon  相似文献   

7.
The rates of gross photosynthesis of the flag leaf and the nextleaf below (second leaf) in crops of winter wheat were estimatedfrom the 14C uptake of the leaves after exposure to short pulsesof 14CO2. The photosynthetic rates of both leaves during thegrain-filling period decreased with increase in nitrogen fertilizerbecause the intensity of photosynthetically active radiationwas less at the surface of the leaves in the dense crops withadditional nitrogen. In addition, the rate of photosynthesisat saturating light intensity was slightly decreased by nitrogen.The effects of nitrogen, in decreasing the rate of photosynthesisper unit area of leaf and in increasing the leaf-area indexof the top two leaves, were such that the photosynthetic productivityper unit area of land of the flag leaf was increased by nitrogenbut the productivity of the second leaf was unaffected. Applying180 kg N ha–1 increased the productivity of the top twoleaves by a factor of 2.3 but increased grain yield by only1.8. The photosynthetic productivity of the second leaf duringthe grain-filling period was about half that of the flag leaf. There was no difference in photosynthetic rate per unit areaof leaves of Cappelle-Desprez and Maris Huntsman which couldaccount for the larger yield of the latter cultivar. There wasa slight indication that the leaves of the semi-dwarf cultivarsMaris Fundin and Hobbit photosynthesized faster than those ofMaris Huntsman. Triticum aestivum L., winter wheat, photosynthesis, nitrogen fertilizer  相似文献   

8.
Experiments were conducted during the 1974–75 and 1975–76winter season with the barley (Hordeum vulgare L.) cultivarJyoti. From amongst the various plant parts, the flag leaf bladehad higher in vivo nitrate reductase (NR) activity than thelower two leaf blades, glumes, and grains. However, the potentialof a plant part to reduce NO3 is a function of its freshweight and the NR per unit fresh weight. On this basis, thesecond and third leaf blades could reduce more NO3 thanthe flag leaf blade. N fertilizer application resulted in enhancementof the activity of the leaf blades alone. N fertilizer appliedduring the reproductive phase was taken up and assimilated bythe various plant parts. The studies suggest that, even whenthe fertilizer is applied at optimum levels for obtaining maximumyields, the upper leaf blades have sub-optimal NR activity andthat there is a likelihood of either a preferential flow ofNO3 to the leaf blades or transnational barriers to NO3movement to the ear.  相似文献   

9.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

10.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

11.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

12.
Dark CO2-fixation in guard cells of Vicia faba was much moresensitive to ammonium than in mesophyll cells. Addition of ammonium(5.0 mol m–3; pH0 7.6) caused up to a 7-fold increasein dark CO2-fixation rates in guard cell protoplasts (GCP),whereas in leaf slices, mesophyll cells, and mesophyll protoplaststhe increase was only about 1.4-fold. In both cell or tissuetypes, total CO2-fixation rates were higher in the light (2–12-foldhigher in GCP and 28-fold in mesophyll); these rates were onlyslightly changed by ammonium treatment. However, separationof 14C-labelled products after fixation of CO2 in the lightby GCP revealed a large ammonium-induced shift in carbon flowfrom starch and sugars to typical products of C4-metabolism(mainly malate and aspartate). In contrast, in mesophyll cellsamino acid and malate labelling was only moderately increasedby ammonium at the expense of sucrose. The data suggest thatin vivo ammonium might facilitate stomatal opening and/or delaystomatal closing through an increased production of organicacids. Key words: PEP-carboxylation, guard cell protoplasts, ammonium, fusicoccin  相似文献   

13.
CO2 uptake and diffusion conductance of Valencia orange fruits(Citrus sinensis L. Osbeck) were measured in the field duringthe growing season of 1977/78 to ascertain if, as in the leaf,stomata control photosynthesis and transpiration under changingenvironmental conditions. Measurements were made on 15 yearold trees grown in a sandy loam soil and receiving either adry or a wet treatment. Fruit diffusive conductance was measuredwith a modified water vapour diffusion conductance meter andgross photosynthesis was measured with a 14CO2 uptake meter.Photosynthetically active radiation (PAR) was measured witha quantum sensor. Fruits exposed to light assimilated CO2 ata rate which was 25–50% of that assimilated by leaves.The uptake was dependent on fruit size, PAR, chlorophyll content,and on diffusive conductance of the fruit epidermis. Epidermalconductance showed a diurnal trend which was similar in shapeto that of the leaf except in the late afternoon. Cuticularconductance of the fruit was calculated and ranged between 0.22and 0.30 mm s–1. It was speculated that the CO2 uptakeby the fruit could support the growth of flavedo cell layerswhen exposed to light. Dry soil caused an increase in the 14CO2uptake by fruit possibly caused by the increased potential areaof the stomatal opening per unit of fruit surface area.  相似文献   

14.
When grown in pots and well-watered, the relative growth ratesof the above ground parts of two species of Moricandia (M. arvensis,an intermediate C3–C4 species, and M. moricandioides,a C3 species) were inferior to those of two cultivated Brassicaspecies (B. campestris and B. napus). The Moricandia specieshad thicker leaves (greater d.wt per unit leaf area) with morechlorophyll than the Brassica species and had slightly greaterrates of photosynthesis per unit leaf area at an irradiance(400–700 nm) of 2000 µmol quanta m–2 s –1.Leaves of M. arvensis, known to have a CO2 compensation pointbetween that of C3 and C4 species, had a lower ratio of theintercellular to atmospheric partial pressure of CO2 (C1/Ca)and a greater instantaneous water use efficiency (WUE) thanthose of M. moricandioides and the Brassica species. Carbon isotope discrimination (  相似文献   

15.
Changes in anatomical and physiological features, includingchanges in amount per unit area of anthocyanin and chlorophyll,in leaves of seedling mango (Mangifera indica L. cv. Irwin)trees were determined to understand what controls the rate ofphotosynthesis (Pn) at various stages of development. The youngleaves of seedling trees contained high concentrations of anthocyanin.During enlargement of leaves, the disappearance of anthocyaninand the accumulation of chlorophyll occurred concomitantly;the anthocyanin content began to decrease markedly once theleaf area had reached a maximum. During the early period ofleaf development, the thickness of mesophyll tissue decreasedtemporarily, but when the length of the leaf reached half thatof a mature leaf, the mesophyll began to thicken again. Smallstarch grains appeared in the chloroplasts of the young leavesand chloroplast nucleoids (ct-nuclei) were distributed throughoutthe chloroplasts. When leaves matured, ct-nuclei were displacedto the periphery of chloroplasts because of the accumulationof large starch grains. Compared with young leaves, green andmature leaves contained greater concentrations of ribulose bisphosphatecarboxylase-oxygenase (RuBisCO) protein. The results of immunocytochemicalexamination of RuBisCO under the light microscope reflectedthe results of electrophoresis measurements of RuBisCO. Pn waslow during the chocolate-coloured stage of early leaf development.In green and mature leaves Pn was higher; the average Pn was7·6 mg CO2 dm-2 h-1 under light at intensities above500 µmol m-2 s-1.Copyright 1995, 1999 Academic Press Mangifera indica L., mango leaf, chloroplast nucleoids, chloroplast ultrastructure, starch accumulation, anthocyanin, chlorophyll, DAPI staining, SDS-PAGE, immunocytochemical technique  相似文献   

16.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

17.
Experiments are reported on the spatial distributions of isotopiccarbon within the mesophyll of detached leaves of the C3 plantVicia faba L. fed 14CO2 at different light intensities. Eachleaf was isolated in a cuvette and ten artificial stomata providedspatial continuity between the ambient atmosphere (0.03–0.05%v/v CO2) and the mesophyll from the abaxial leaf side. Paradermalleaf layers exhibited spatial profiles of radioactivity whichvaried with the intensity of incident light in 2 min exposures.At low light, when biochemical kinetics should limit CO2 uptake,sections through palisade cells contained most radioactivity.As the light intensity was increased to approximately 20% offull sunlight, peak radioactivity was observed in the spongycells near the geometric mid-plane of the mesophyll. The resultsindicate that diffusion of carbon dioxide within the mesophyllregulated the relative photosynthetic activity of the palisadeand spongy cells at incident photosynthetically active lightintensities as little as 110 µE m–2 s–1 whenCO2 entered only through the lower leaf surface. Key words: CO2 capture sites, Vicia faba L., Artificial stomata  相似文献   

18.
The effects of different applied NO3 concentrations onextension growth and final length and area of leaves 1–4of five cereals and six pasture grasses of temperate originwere examined. Increased applied NO3 in the range 0.1–0.5.0mol m–3 caused decreased duration of growth but increasedgrowth rate and final length of leaves 2–4 of the cerealsAvena saliva, Hordeum vulgare, Secale cereale, x Triticosecaleand Triticum aestivum. For all cereals, increased NO3resulted in increased area of leaves 1–4. Pasture grasseswere supplied either 0.5 or 50 mol m–3 NO3. Increasedapplied NO3 (0.5–5.0 mol m–3) resulted indecreased duration of growth and increased growth rate and finalarea of leaves 1–4 of Bromus wiltdenowii, leaves 2–4ofFestuca arundinaceae and leaves 3 and 4 of Lolium muitiflorum.In addition, length of leaves 3 and 4 of B. witidenowii increasedwith increased NO3. Increased NO3 resulted inincreased area of leaves 2–4 of Dactylis gtomerata andLolium perenne and leaves 3 and 4 of Phalaris aquaiica but hadno effect on extension growth of all three species. Avena sativa L, oat, Hordeum vulgare L, barley, Secale cereale L, rye, x Triticosecale Wittm, triticale, Triticum aestivum L, wheat, Bromus willdenowii Kunth, prairie grass, Dactylis gtomerata L, cocksfoot, Festuca arundinaceae Shreb, tall fescue, Lolium multijlorum Lam, Italian ryegrass, Lolium perenne L, perennial ryegrass, Phalaris aquatica L, nitrate, leaf extension, leaf expansion  相似文献   

19.
The distribution of photosynthate labelled with 14C was studiedin spring wheat grown with different amounts of nitrogen fertilizerin the three years 1972–4, after exposing the flag leafor the leaf below the flag leaf to 14CO2 at 6–10 or 19–26days after anthesis. The movement of 14C to ears was unaffectedby nitrogen fertilizer except after early exposure in 1973,when nitrogen increased the retention of 14C in stems at maturity The concentration of sugar in the top part of the shoot at theend of the day was unaffected by nitrogen in 1973, but at 22days after anthesis in 1974 the concentration of sucrose inthe glumes and rachis, and in the flag leaf lamina was increasedby nitrogen. Loss of sugar by translocation and respirationduring the night may explain why this increase in concentrationwas not reflected in the 14C distribution 24 h after supplying14C. The proportion of the total 14C content of the shoot that wasin the ear at maturity ranged from 68 to 95 per cent dependingon when and to which leaf the 14CO2 was supplied. Less than5 per cent remained in the leaf exposed to 14CO2. The proportionof the final ear weight contributed by the leaf below the flagleaf was about half that contributed by the flag leaf. In 1974 about 24 per cent of the 14C absorbed by the flag leaf,and 56 per cent of that absorbed by the second leaf, was lostby maturity, presumably by respiration. Most loss occurred inthe first 24 h.  相似文献   

20.
The three-dimensional quantitative leaf anatomy in developingyoung (9–22 d) first leaves of wild type Arabidopsis thalianacv. Landsberg erecta from mitosis through cell and leaf expansionto the cessation of lamina growth has been studied. The domainsof cell division, the relative proportion of the cell typespresent during development and the production of intercellularspace in the developing leaf have been determined by image analysisof entire leaves sectioned in three planes. Mitotic activityoccurs throughout the youngest leaves prior to unfolding andcell expansion is initiated firstly at the leaf tip with a persistentzone of mitotic cells at the leaf base resulting in a gradientof development along the leaf axis, which persists in the olderleaves. Major anatomical changes which occur during the developmentare, a rapid increase in mesophyll volume, an increase in thevein network, and expansion of the intercellular spaces. Thepattern of cell expansion results in a 10-fold variation inmesophyll cell size in mature leaves. In the youngest leavesthe plan area of mesophyll cells varies between 100 µm2and 400 µm2 whereas in mature leaves mesophyll cells rangein plan area from 800 µm2 to 9500 µm2. The volumesof mesophyll tissue and airspace under unit leaf area increase3-fold and 35-fold, respectively, during leaf expansion. Thevolume proportions of tissue types mesophyll:airspace:epiderrnal:vascularin the mature leaf are 61:26:12:1, respectively. This studyprovides comparative information for future identification andanalysis of leaf development mutants of Arabidopsis thaliana. Key words: Arabidopsis, quantitative leaf anatomy, leaf expansion, image analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号