首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Close contact of mesenchymal cells in vivo and also in super dense micromass cultures in vitro results in cellular condensation and alteration of existing cellular signaling required for initiation and progression of chondrogenesis. To investigate chondrogenesis related changes in the activity of ubiquitous cell signaling mediated by mitogen-activated protein kinases (MAP kinase), we have compared the effect of cell seeding of pluripotent C3H10T1/2 mesenchymal cells as monolayers (non-chondrogenic culture) or high density micromass cultures (chondrogenic) on the regulation and phosphorylation state of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and also on regulation of ERK1/2 nuclear targets, namely, activation protein-1 (AP-1) and serum response factor (SRF). Increasing cell density resulted in reduced DNA binding as well as activity of AP-1. SRF activity, on the other hand, was up-regulated in confluent monolayer cultures but like AP-1 was inhibited in micromass cultures. Low levels of PD 98059 (5 microM), a specific inhibitor of ERK1/2, resulted in delayed induction of AP-1 and SRF activity whereas higher concentrations of this inhibitor (10-50 microM) conferred an opposite effect. Increasing concentrations of the PD 98059 inhibitor in long term monolayer or micromass cultures (2.5 day) resulted in differential regulation of c-Fos and c-Jun protein levels as well as total expression and phosphorylation levels of ERK1/2. PD 98059 treatment of C3H10T1/2 micromass cultures also resulted in up-regulation of type IIB collagen and Sox9 gene expression. While high expression of aggrecan and type IIB collagen genes were dependent on BMP-2 signaling, ERK inhibition of BMP-2 treated micromass cultures resulted in reduced activity of both genes. Our findings show that the activity of ERK1/2 in chondrogenic cultures of C3H10T1/2 cells is tightly controlled and can cross interact with other signaling activities mediated by BMP-2 to positively regulate chondrogensis.  相似文献   

2.
Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis   总被引:8,自引:0,他引:8  
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. A key component of the Wnt signaling pathway is the cytosolic protein, beta-catenin. We have recently shown that the chondrogenic activity of BMP-2 in vitro involves the action of the cell-cell adhesion protein, N-cadherin, which functionally complexes with beta-catenin. The aim of this study is to test the hypothesis that Wnts may be involved in BMP-2 induced chondrogenesis, using an in vitro model of high-density micromass cultures of the murine multipotent mesenchymal cell line, C3H10T1/2. Expression of a number of Wnt members was detected in these cultures, including Wnt-3A and Wnt-7A, whose levels were up- and downregulated, respectively, by BMP-2. To assess the functional involvement of Wnt signaling in BMP-2 induced chondrogenesis, cultures were treated with lithium chloride, a Wnt-7A mimetic that acts by inhibiting the serine/threonine phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta). Lithium treatment significantly inhibited BMP-2 stimulation of chondrogenesis as well as GSK-3beta enzymatic activity, and decreased the levels of N-cadherin protein and mRNA. Furthermore, lithium decreased BMP-2 upregulation of total and nuclear levels of LEF-1 and beta-catenin as well as their interaction during later chondrogenesis; similarly, the interaction of beta-catenin with N-cadherin was also decreased. Interestingly, lithium treatment did not affect the ability of BMP-2 to decrease ubiquitination of beta-catenin, although it did reduce the interaction of beta-catenin with GSK-3beta during late chondrogenesis (days 9-13). We suggest that the chondro-inhibitory effect of lithium on BMP-2 induced chondrogenesis indicates antagonism between lithium-like Wnts and BMP-2 during mesenchymal condensation.  相似文献   

3.
4.
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) superfamily, is characterized by its ability to induce cartilage and bone formation. We have recently demonstrated that the multipotential, murine embryonic mesenchymal cell line, C3H10T1/2, when cultured at high density, is induced by BMP-2 or TGF-beta 1 to undergo chondrogenic differentiation. The high-cell-density requirement suggests that specific cell-cell interactions, such as those mediated by cell adhesion molecules, are important in the chondrogenic response. In view of our recent finding that N-cadherin, a Ca(2+)-dependent cell adhesion molecule, is functionally required in normal embryonic limb mesenchyme cellular condensation and chondrogenesis, we examine here whether N-cadherin is also involved in BMP-2 induction of chondrogenesis in C3H10T1/2 cells. BMP-2 stimulation of chondrogenesis in high-density micromass cultures of C3H10T1/2 cells was evidenced by Alcian blue staining, elevated [35S]sulfate incorporation, and expression of the cartilage matrix markers, collagen type II and cartilage proteoglycan link protein. With BMP-2 treatment, N-cadherin mRNA expression was stimulated 4-fold within 24 h, and by day 5, protein levels were stimulated 8-fold. An N-cadherin peptidomimic containing the His-Ala-Val sequence to abrogate homotypic N-cadherin interactions inhibited chondrogenesis in a concentration-dependent manner. To analyze the functional role of N-cadherin further, C3H10T1/2 cells were stably transfected with expression constructs of either full-length N-cadherin or a dominant negative, N-terminal deletion mutant of N-cadherin. Moderate (2-fold) overexpression of full-length N-cadherin augmented, whereas higher (4-fold) overexpression inhibited the BMP-2-chondrogenic effect. On the other hand, expression of the dominant negative N-cadherin mutant dramatically inhibited BMP-2 stimulated chondrogenesis. These data strongly suggest that upregulation of N-cadherin expression, at defined critical levels, is a candidate mechanistic component of BMP-2 stimulation of mesenchymal chondrogenesis.  相似文献   

5.
The multipotential murine embryonic C3H10T1/2 mesenchymal cell line is able to undergo chondrogenesis in vitro, in a high density micromass environment, following treatment with soluble human bone morphogenetic protein-2 (BMP-2). To enhance this process, the human BMP-2 cDNA was cloned into a retroviral expression vector and a high titer, infectious retrovirus (replication defective) was generated. Infection of C3HIOT1/2 cells with this retroviral construct resulted in an infection efficiency of 90-95% and was highly effective in converting cells in micromass culture to a chondrocyte phenotype, as assessed by positive Alcian blue staining for extracellular matrix proteoglycans, increased sulfate incorporation, increased expression of the cartilage marker genes collagen type II and aggrecan, and decreased expression of collagen type I. Interestingly, BMP-2 expression in the micromass cultures also induced the expression of the cell cycle inhibitory protein/differentiation factor p21/WAF1, suggesting its functional involvement in chondrogenesis. The chondrogenic effect of retrovirally expressed BMP-2 in these high-density cultures was limited to the infected cells, since uninfected cells did not chondrify when co-cultured as a nonoverlapping micromass adjacent to BMP-2 expressing cells. These data indicate that retrovirally expressed BMP-2 is highly effective at inducing a chondrocyte phenotype in a multipotential mesenchymal cell line in vitro, and its action is restricted to the infected cell population. These findings should provide a framework for the optimization of chondrogenesis in culture using mesenchymal stem cells and retroviral gene transfer.  相似文献   

6.
7.
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. In this study, we have used multipotential murine C3H10T1/2 cells to analyze the effect and mechanism of action of bone morphogenetic protein 2 (BMP-2) on chondrogenesis. C3H10T1/2 cells have been previously shown to undergo multiple differentiation pathways. While chondrogenesis, osteogenesis, myogenesis and adipogenesis have been observed, chondrocytes appear significantly less frequently than the other cell types, and the appearance of chondrocytes exclusive of the other cell types has not been observed. We report here that the appearance of chondrocytes in C3H10T1/2 cells is markedly enhanced as a result of culture under conditions favorable for chondrogenesis, i.e. plating as high-density micromass and treatment with BMP-2. Such cultures contain chondrocyte-like cells, elaborate an Alcian blue stained cartilage-like matrix, express link protein and type II collagen, both cartilage matrix markers, and show increased [35S]sulfate incorporation. The appearance of Alcian blue positive material and increased sulfate incorporation are dependent on the dose of BMP-2, culture time, and cell plating density of the micromass cultures. Differentiation of cells within the micromass was specific to the chondrogenic lineage, as alkaline phosphatase staining revealed only faint staining in the micromass at the highest BMP-2 concentration. The importance of enhanced cell-cell interaction in the chondroinductive effects of BMP-2 on high-density C3H10T1/2 cultures was further implicated by the additional promotion of chondrogenesis in the presence of the polycationic compound, poly-L-lysine, which has been previously reported to enhance cellular interactions and chondrogenesis in embryonic limb mesenchymal cells. Taken together, these findings suggest that chondrogenesis in C3H10T1/2 cells is inducible by BMP-2 and requires cell-cell interaction.  相似文献   

8.
We have recently reported the chondrogenic effect of bone morphogenetic protein-2 (BMP-2) in high density cultures of the mouse multipotent mesenchymal C3H10T1/2 cell line and have shown the functional requirement of the cell-cell adhesion molecule N-cadherin in BMP-2-induced chondrogenesis in vitro (Denker, A. E., Nicoll, S. B., and Tuan, R. S. (1995) Differentiation 59, 25-34; Haas, A. R., and Tuan, R. S. (1999) Differentiation 64, 77-89). Furthermore, BMP-2 treatment also results in an increased protein level of beta-catenin, a known N-cadherin-associated Wnt signal transducer (Fischer, L., Haas, A., and Tuan, R. S. (2001) Signal Transduction 2, 66-78), suggesting functional cross-talk between the BMP-2 and Wnt signaling pathways. We have observed previously that BMP-2 treatment up-regulates expression of Wnt-3A in high density cultures of C3H10T1/2 cells. To assess the contribution of Wnt-3A to BMP-2-mediated chondrogenesis, we have generated C3H10T1/2 cell lines overexpressing Wnt-3A and various forms of glycogen synthase kinase-3beta (GSK-3beta), an immediate cytosolic component of the Wnt signaling pathway, and examined their response to BMP-2. We show that overexpression of either Wnt-3A or kinase-dead GSK-3beta enhances BMP-2-mediated chondrogenesis. Furthermore, Wnt-3A overexpression results in decreases in both N-cadherin and GSK-3beta protein levels, whereas Wnt-3A as well as kinase-dead GSK-3beta overexpression increase total and nuclear levels of both beta-catenin and LEF-1. Direct cross-talk between Wnts and BMP-2 was also indicated by the up-regulated interaction between beta-catenin and SMAD-4 in response to BMP-2. These results suggest that Wnt-3A acts in a manner opposite to that of other Wnts, such as Wnt-7A, which were previously identified as inhibitory to chondrogenesis, and is the first BMP-2-regulated, chondrogenesis-enhancing member of the Wnt family.  相似文献   

9.
We studied the roles of protein kinase A (PKA) activation and cyclic AMP response element binding protein (CREB) phosphorylation in chondrogenesis using serum-free chicken limb bud micromass cultures as a model system. We showed the following points: (1) in micromass cultures, activation of PKA enhances chondrogenesis and increases the phosphorylation of CREB; (2) BMP-2, a chondrogenic stimulator, increases PKA activity and the level of phosphorylated CREB (P-CREB); (3) H8, a PKA inhibitor, inhibits chondrogenesis; (4) the chondrogenic activities of BMP-2 and cAMP are suppressed by H8; and (5) long-term TPA treatment (a protein kinase C (PKC) modulator) inhibits chondrogenesis and decreases the levels of CREB and P-CREB. These results suggest that activation of PKA is a physiological event during chondrogenesis that is involved in the chondrogenic effects of both BMP-2 and cyclic AMP (cAMP)-dependent pathways. J. Cell. Physiol. 170:153–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Perlecan (Pln) is an abundant heparan sulfate (HS) proteoglycan in the pericellular matrix of developing cartilage, and its absence dramatically disrupts endochondral bone formation. This study examined two previously unexamined aspects of the function of Pln in mesenchymal chondrogenesis in vitro. Using the well-established high-density micromass model of chondrogenic differentiation, we first examined the requirement for endogenous Pln synthesis and secretion through the use of Pln-targeted ribozymes in murine C3H10T1/2 embryonic fibroblasts. Second, we examined the ability of the unique N-terminal, HS-bearing Pln domain I (PlnDI) to synergize with exogenous bone morphogenetic protein-2 (BMP-2) to support later stage chondrogenic maturation of cellular condensations. The results provide clear evidence that the function of Pln in late stage chondrogenesis requires Pln biosynthesis and secretion, because 60%-70% reductions in Pln greatly diminish chondrogenic marker expression in micromass culture. Additionally, these data support the idea that while early chondrocyte differentiation can be supported by exogenous HS-decorated PlnDI, efficient late stage PlnDI-supported chondrogenesis requires both BMP-2 and Pln biosynthesis.  相似文献   

11.
The mesenchymal cell line C3H10T1/2 can be preferentially induced toward chondrogenesis by culturing as a micromass in the presence of bone morphogenetic protein 2. To screen new regulator genes for chondrogenic differentiation, we performed differential display polymerase chain reaction and identified growth arrest-specific 6 (Gas6) as a gene that was clearly downregulated by this induction of chondrogenic differentiation. Blockage of Gas6 mRNA expression by siRNA remarkably enhanced the chondrogenic differentiation, while stimulation with recombinant Gas6 inhibited the mRNA expressions of type II collagen (Col2a1) and aggrecan. Gas6 signaling activated the phosphorylation of ERK1/2, SAPK/JNK, and Akt, but not p38 MAPK. These results suggest that Gas6 negatively regulates chondrogenic differentiation, at least through the MAPK pathway.  相似文献   

12.
13.
14.
Adhesive signaling plays a key role in cellular differentiation, including in chondrogenesis. Herein, we probe the contribution to early chondrogenesis of two key modulators of adhesion, namely focal adhesion kinase (FAK)/Src and CCN2 (connective tissue growth factor, CTGF). We use the micromass model of chondrogenesis to show that FAK/Src signaling, which mediates cell/matrix attachment, suppresses early chondrogenesis, including the induction of Ccn2, Agc, and Sox6. The FAK/Src inhibitor PP2 elevates Ccn2, Agc, and Sox6 expression in wild-type mesenchymal cells in micromass culture, but not in cells lacking CCN2. Our results suggest a reduction in FAK/Src signaling is a critical feature permitting chondrogenic differentiation and that CCN2 operates downstream of this loss to promote chondrogenesis.  相似文献   

15.
16.
17.
18.
19.
20.
The murine mesenchymal cell line, C3H10T1/2 in micromass culture undergoes chondrogenic differentiation with the addition of BMP-2. This study compares the use of BMP-2 vs. insulin, transferrin, and sodium selenite (ITS) to create a chondrogenic micromass cell culture system that models cartilage calcification in the presence of 4 mM inorganic phosphate. BMP-2 treated cultures showed more intense alcian blue staining for proteoglycans than ITS treated cultures at early time points. Both ITS and BMP-2 treated cultures showed similar mineral deposition in cultures treated with 4 mM phosphate via von Kossa staining, however FTIR spectroscopy of cultures showed different matrix properties. ITS treated cultures produced matrix that more closely resembled mouse calcified cartilage by FTIR analysis. 45Ca uptake curves showed delayed onset of mineralization in cultures treated with BMP-2, however they had an increased rate of mineralization (initial slope of 45Ca uptake curve) when compared to the cultures treated with ITS. Immunohistochemistry showed the presence of both collagens type I and type II in BMP-2 and ITS treated control (1 mM inorganic phosphate) and mineralizing cultures. BMP-2 treated mineralizing cultures displayed more intense staining for collagen type II than all other cultures. Collagen type X staining was detected at Day 9 only in mineralizing cultures treated with ITS. Western blotting of Day 9 cultures confirmed the presence of collagen type X in the mineralizing ITS cultures, and also showed very small amounts of collagen type X in BMP-2 treated cultures and control ITS cultures. By Day 16 all cultures stained positive for collagen type X. These data suggest that BMP-2 induces a more chondrogenic phenotype, while ITS treatment favors maturation and hypertrophy of the chondrocytes in the murine micromass cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号