首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gasomodulators – nitric oxide, carbon monoxide and hydrogen sulphide – are important physiological mediators that have been implicated in disorders such as neurodegeneration and sepsis. Some of their biological functions involve the mitochondria. In particular, their inhibition of cytochrome c oxidase has received much attention as this can cause energy depletion and cytotoxicity. However, reports that cellular energy production and cell survival are maintained even in the presence of gasomodulators are not uncommon. In both cases, modulation of mitochondrial targets by the gasomodulators appears to be an important event. We provide an overview of the effects of the gasomodulators on the mitochondria.  相似文献   

2.
As is the case for the assembly of protein components of the membranes in animal mitochondria, the bilayer phospholipids arise from a complicated interplay of intra- and extra-mitochondrial reactions. Our early studies indicated that the bulk of mitochondrial phospholipids (typified by phosphatidylcholine) had their origin in the endoplasmic reticulum and were transported to the mitochondria as complexes with phospholipid-exchange proteins. The polyglycerophosphatides (typified by diphosphatidylglycerol) were apparently synthesized in situ by intramitochondrial membrane-bound enzymes using CDP-diglycerides as intermediates. The case for the precursors in the latter pathway is less clear, although evidence has been presented for dual localization of enzymes for glycerophosphate acylation and CTP:phosphatidate cytidylyl transfer in both mitochondria and microsomes. Phosphatidylethanolamine also shows evidence for two sites of origin: by translocation from its site of synthesis in the endoplasmic reticulum and by translocation of phosphatidylserine followed by decarboxylation within the mitochondria. In the latter case mitochondrial phosphatidylserine decarboxylase may play an important role in the regulation of phospholipid metabolism throughout the cell.  相似文献   

3.
Mitochondria are both morphologically and functionally diverse, and this variety is thought to have important biological ramifications. The development of methods to probe the properties of individual mitochondria is therefore of utmost importance. Recent advances have been made using in situ microscopy techniques and methods to investigate isolated mitochondria, including flow cytometry, capillary electrophoresis, patch-clamping and optical trapping. Such techniques have been used to study metabolism, mitochondrial calcium homeostasis, mitochondrial membrane potential, apoptosis, and other properties.  相似文献   

4.
5.
6.
Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

7.
8.
9.
The kinetics of whale MbO2 deoxygenation was studied spectrophotometrically in the presence of breathing rat mitochondria under conditions when mitochondria were separated from the protein solution by a semipermeable film capable to transfer only low-molecular-weight compounds and directly in the solution of MbO2 with mitochondria (incubation medium: 15-35 mM succinate, 150 mM sucrose, 100 mM KCl, 0.5 mM EGTA, 5 mM KH2PO4, 10 mM MOPS, pH 7.4). It was shown that the splitting of O2 from MbO2 at physiological pO2 is possible only if it directly contacts mitohondria. The deoxygenation rate does not depend on the protein concentration (zero order on [MbO2] as opposite to the first order reaction in the absence of mitochondria) and completely coincides with the rate of oxygen consumption by mitochondria under the same conditions, as indicated by the polarographic data. The dependence of the MbO2 deoxygenation rate on the concentration of mitochondria and the protein, and on the total charge of the MbO2 molecule was studied using horse MbO2 (pI 7.1), sperm whale MbO2 (pI 8.3), its zinc complex, Zn-MbO2 (pI > 8.3), and the sperm whale MbO2 derivative carboxymethylated at His residues, CM-MbO2 (pI 5.2). The mechanism of MbO2 deoxygenation in the cell obviously actuates its interplay with the mitochondrial membrane. As a result, the affinity of Mb to oxygen decreases several times, which corresponds to a shift of the Mb dissociation curve to higher pO2 values.  相似文献   

10.
Isolated, intact mitochondria were evaluated for their ability to phosphorylate deoxyguanosine. This activity was stimulated by exogenous ATP, substrates for oxidative phosphorylation or added inorganic phosphate. Inhibitors of oxidative phosphorylation lowered the levels of deoxyguanosine phosphorylation. From a Hanes plot, an apparent Km of 0.83 microM deoxyguanosine was calculated for the phosphorylation activity in intact mitochondria. In the presence of a 20-fold excess of added deoxynucleosides, none of those tested were strongly inhibitory. However, added UDP and dTDP were stimulatory and dGTP and dGDP were inhibitory to the phosphorylation of deoxyguanosine. These data show that mitochondria phosphorylate deoxyguanosine and that the process is regulated by other events which take place within the organelle.  相似文献   

11.
12.
Maturation of an immature oocyte into one capable of being fertilized involves tightly choreographed movements of chromosomes and organelles. The localizaton of mitochondria during maturation was studied in live mouse oocytes by confocal laser scanning microscopy (CLSM). Mitochondria were labeled with rhodamine 123 or Mitotracker (Molecular Probes, Eugene, OR) both of which are cell permeant and accumulate in mitochondria; acridine orange was used to mark chromatin. Prior to maturation, oocytes appeared to be radially symmetrical with no evident polarity; fully mature oocytes exhibited obvious polarity marked by the position of the metaphase II spindle in the cortex. CLSM revealed several interesting features of mitochondrial distribution: (1) A cortical clump of mitochondria was seen approximately 30-45to one side of the metaphase II spindle and marked the region of polar body I extrusion. (2) Large foci of mitochondria (7–14μM) were frequently found around the central region of the mature oocyte, while the central region often exhibited markedly fewer mitochondria. (3) Small mitochondrial foci (3μM) in the cortex and near the GV characterized several oocytes which failed to mature. (4) Non-spindle-associated mitochondria were not uniformly distributed in the mature oocyte but were concentrated in the hemisphere containing the metaphase II spindle. (5) The distal margins of this mitochondrial hemisphere were sharply demarcated at the cortex. These findings should help us understand organelle localization during mammalian oocyte maturation, and may give insights into possible causes of infertility and into early events of preimplantation development. © 1995 Wiley-Liss, Inc.  相似文献   

13.
14.
The relationship between the respiration rate and the magnitude of the electrochemical proton potential (ΔμH+) in rat liver mitochondria was investigated. (1) Under the active-state conditions, the action of inhibitors of either phosphorylation (oligomycin) or respiration (rotenone, malonate) on the respiration and ΔμH+ was measured. Both inhibitors diminished the respiration, whereas rotenone resulted in a decrease of ΔμH+, and oligomycin produced an increase of this potential. The effect of the inhibitors was much more pronounced on the respiration rate than on ΔμH+; for example, the excess of oligomycin produced a 90% inhibition of the respiration while ΔμH+ was changed only by 9%. (2) Under the resting-state conditions, small concentrations of the uncoupler stimulated the respiration while changing ΔμH+ to a relatively small extent. The uncoupler concentrations which doubled and tripled the respiration rate produced only 5 and 9% decrease of ΔμH+, respectively. (3) The present results enabled us to propose a model describing the interrelationship between respiration and ΔμH+.  相似文献   

15.
When yeast cells are grown in thallium-containing broth, the thallium ion is oxidized in the mitochondria to Tl2O3. This oxide is subsequently discharged from the mitochondria and finally excreted from the protoplast.  相似文献   

16.
17.
Summary Prolonged deaeration ofSaccharomyces cerevisiae cells results in degenerative changes in mitochondria which can be revealed when measuring the enzymic activities of the respiratory chain in isolated organelles and by electron microscope examination of the cells. The same changes are observed after a 3-h incubation of the cells with cyanide or carbonyl cyanide, m-chlorophenyl hydrazone in aerobic conditions. These results suggest the important role of oxidative phosphorylation in the maintenance of the integrity of mitochondria in the cell.The sensitivity of yeast mitochondria to anaerobiosis and cyanide changes as the culture grows. Mitochondria are especially labile during the early exponential growth phase when their respiratory system and structure are not fully formed. Possible reasons for and the mechanism of degradation of mitochondriain vivo are discussed.  相似文献   

18.
Essentially all polypeptides synthesized in the cytoplasm and imported into either the matrix or into the inner or outer membrane of mitochondria are made as larger molecular weight precursors. All known examples of in vivo or in vitro synthesized precursors are summarized. Little information on the nature of the proteolytic enzymes involved in the processing of the larger precursor polypeptides exists. The biosynthesis of rat liver cytochrome c oxidase is discussed in detail. In contrast to reported data, the cytoplasmic subunits of rat liver cytochrome c oxidase are synthesized as larger molecular weight precursors and not as a polyprotein. Precursors to subunits IV and V show an extra-peptide sequence of about 3000 daltons. Evidence against the existence of a polyprotein precursor was also obtained, when messenger RNAs for the individual subunits IV and V were isolated and analyzed in respect to their size. A length of 990 +/- 80 and 830 +/- 70 nucleotides was estimated for the poly(A)+-RNA of cytochrome c oxidase subunits IV and V, respectively. In experiments on the site of synthesis, it was found that cytochrome c oxidase subunits IV and V are made on free, loosely and tightly membrane-bound polyribosomes.  相似文献   

19.
Morphometric study of myocardial mitochondria in the rat   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

20.
Size-separation of yeast mitochondria in the zonal centrifuge   总被引:1,自引:0,他引:1       下载免费PDF全文
Mitochondria, released from yeast spheroplasts and subjected to rate separation through sorbitol gradients in the zonal centrifuge, migrated in a wide symmetrical zone. Electron micrographs showed that the mitochondria had been resolved within the zone according to size. The mean mitochondrial diameter at the leading edge was approximately twice that at the trailing edge of the particle zone. Activities of the enzymes cytochrome oxidase, malate dehydrogenase, and reduced nicotinamide adenine dinucleotide- and d-lactate cytochrome c reductases were essentially uniform throughout the mitochondrial zone. Mitochondria from a vegetative-petite mutant had almost the same size distribution as the isogenic wild type, but with somewhat larger mean diameter and either absent or markedly reduced enzyme activities. Mixtures of wild-type and petite mitochondria produced sedimentation profiles showing overlap of particle populations with respect to mean sedimentation rates and mitochondrial diameters, as well as intermediate levels of enzyme activities. Both cristate and noncristate organelles were present throughout the mitochondrial zone from these mixtures. Mitochondria centrifuged in sorbitol density gradients were well-preserved and yielded consistent sedimentation profiles, whereas particles in sucrose density gradients migrated more slowly, produced varied sedimentation profiles, and often showed spurious peaks, presumably due to particle aggregations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号