首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exposure of isolated thylakoids or intact plants to elevated temperature is known to inhibit photosynthesis at multiple sites. We have investigated the effect of elevated temperature (40 degrees C) for 24 hr in dark on rice seedlings to characterize the extent of damage by in vivo heat stress on photofunctions of photosystem II (PSII). Chl a fluorescence transient analysis in the intact rice leaves indicated a loss in PSII photochemistry (Fv) and an associated loss in the number of functional PSII units. Thylakoids isolated from rice seedlings exposed to mild heat stress exhibited >50% reduction in PSII catalyzed oxygen evolution activity compared to the corresponding control thylakoids. The ability of thylakoid membranes from heat exposed seedlings to photooxidize artificial PSII electron donor, DPC, subsequent to washing the thylakoids with alkaline Tris or NH2OH was also reduced by approximately 40% compared to control Tris or NH2OH washed thylakoids. This clearly indicated that besides the disruption of oxygen evolving complex (OEC) by 40 degrees C heat exposure for 24 hr, the PSII reaction centers were impaired by in vivo heat stress. The analysis of Mn and manganese stabilizing protein (MSP) contents showed no breakdown of 33 kDa extrinsic MSP and only a marginal loss in Mn. Thus, we suggest that the extent of heat induced loss of OEC must be due to disorganization of the OEC complex by in vivo heat stress. Studies with inhibitors like DCMU and atrazine clearly indicated that in vivo heat stress altered the acceptor side significantly. [14C] Atrazine binding studies clearly demonstrated that there is a significant alteration in the QB binding site on D1 as well as altered QA to QB equilibrium. Thus, our results show that the loss in PSII photochemistry by in vivo heat exposure not only alters the donor side but significantly alters the acceptor side of PSII.  相似文献   

2.
The kinetics of changes in photosystem I (PSI), photosystemII (PSII), and whole chain (PSII and PSI) electron transport,chlorophyll fluorescence parameters, the capacity to bind atrazineand the polypeptide profiles of thylakoids isolated from wheatleaves on exposure to a photon flux density of 2000 µmolm–2 s–1 were determined. Severe and similar levelsof photo-inhibitory damage to both PSII and whole chain electrontransport occurred and were correlated with decreases in theratio of variable to maximal fluorescence, the proportionalcontribution of the rapid a phase of the fluorescence kineticsand the capacity to bind atrazine. Severe photo-inhibition ofelectron transport was not associated with a major loss of chlorophyllor total thylakoid protein. However, a small decrease in a 70kDa polypeptide together with increases in a number of low molecularmass polypeptides (8–24 kDa) occurred. Phosphorylation of thylakoid polypeptides alleviated photo-inhibitionof PSII electron transport but stimulated photoinhibitory damageto whole chain electron transport. The consequences of suchphosphorylation-induced effects on photoinhibition in vivo areconsidered. Key words: Chlorophyll fluorescence, electron transport, photo-inhibition, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

3.
Photosynthetic electron flow, polypeptide pattern, presence of chlorophyll-protein complexes, and phosphorylation of thylakoid polypeptides have been investigated in differentiated mesophyll (M) and bundle sheath (B) thylakoids of the C4 plant Zea mays. The polypeptide pattern of M thylakoids and their photosynthetic electron flow are comparable to those of other green plants. B thylakoids exhibit only photosystem I (PSI) activity, contain only traces of the PSII light harvesting (LHCII) polypeptide, do not bind [3H] diuron, and lack polypeptides of the water-oxidation complex of PSII and the herbicide binding 32-kDa polypeptide, as detected by specific antibodies. However, B thylakoids possess a partially active PSII reaction center, as demonstrated by light-dependent reduction of silicomolybdate with 1,5-diphenylcarbazide (DPC) as an electron donor, and the presence of the PSII reaction center polypeptides of 44-47 kDa. Only one chlorophyll a-protein complex, corresponding to the PSI reaction center-core antenna, was detectable in B thylakoids, as opposed to chlorophyll a and chlorophyll a,b-protein complexes present in M thylakoids. The light-dependent, membrane-bound kinase activity present in M thylakoids could not be detected in B thylakoids which, nevertheless, contain a protein kinase able to phosphorylate casein. A total of 19 differences between the electrophoretic pattern of B and M thylakoid polypeptides were observed. The mRNA coding for the LHCII polypeptide is primarily, if not exclusively, localized in M cells. The development of PSII complex precedes that of PSI during the differentiation of B and M chloroplasts in expanding leaves of light-grown plants and during the greening of dark-grown etiolated seedlings. The differentiation of the maize leaf into cells programmed to form B or M chloroplasts does not require light. In light-grown plants, the differentiation of B and M thylakoids occurred progressively from the base of the leaf and was completed at 4-5 cm from the leaf base.  相似文献   

4.
Muthuchelian  K.  Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2001,39(3):411-418
Photosynthetic electron transfer was studied in thylakoids isolated from control and DCMU-grown wheat (Triticum aestivum L.) seedlings. When exposed to high temperature (HT) and high iradiance (HI), thylakoids showed large variations in the photosynthetic electron transport activities and thylakoid membrane proteins. A drastic reduction in the rate of whole electron transport chain (H2O MV) was envisaged in control thylakoids when exposed to HT and HI. Such reduction was mainly due to the loss of photosystem 2, PS2 (H2O DCBQ) activity. The thylakoids isolated from seedlings grown in the presence of DCMU showed greater resistance to HT and HI treatment. The artificial exogenous electron donors MnCl2, DPC, and NH2OH failed to restore the HI induced loss of PS2 activity in both control and DCMU thylakoids. In contrast, addition of DPC and NH2OH significantly restored the HT induced loss of PS2 activity in control thylakoids and partially in DCMU thylakoids. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in control thylakoids was evidently due to the loss of 33, 23, and 17 kDa extrinsic polypeptides and 28-25 kDa LHCP polypeptides.  相似文献   

5.
The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 °C for 20 min and to temperature 42 °C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 °C for 72 h. The net photosynthetic rates (PN) and the fluorescence ratios Fv/Fm were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 °C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO2 assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 °C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.  相似文献   

6.
The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.  相似文献   

7.
By using a wild-type rice (Oryza sativa L. cv. Norin No. 8) and the chlorophyll (Chl) b-deficient mutant derived from Norin No. 8 (chlorina 11), the present study monitored the oxygen evolution, contents of Chl a and b, β-carotene, and lutein in leaf and the contents of cytochrome f, and the reaction centres of photosystem I (PSI) and photosystem II (PSII) in thylakoids. The oxygen evolution, maximal quantum yield of PSII (Fv/Fm) and Chl concentration remained constant in both Norin No. 8 and chlorina 11 under 5 and 2% of full sunlight for six days. On the other hand, on the thylakoid level, the PSII reaction centre of chlorina 11 was more stable even under high irradiance, while approximately 40% decrease in levels of the PSII reaction centre occurred under 2% of full sunlight for six days. However, under such conditions, by regulating the stoichiometry of active PSII and PSI centres, the light absorption balance in both rice types was adjusted between the two photosystems. The present study attempted to examine whether the light absorption balance between PSII and PSI is altered to effectively conduct photosynthesis in the wild-type and Chl b-deficient mutant rice seedlings.  相似文献   

8.
9.
Maximum quantum yields (QY) of photosynthetic electron flows through PSI and PSII were separately assessed in thylakoid membranes isolated from leaves of Cucumis sativus L. (cucumber) that had been chilled in various ways. The QY(PSI) in the thylakoids prepared from the leaves treated at 4° C in moderate light at 220 mol quanta·m–2·s–1 (400–700 nm) for 5 h, was about 20–30% of that in the thylakoids prepared from untreated leaves, while QY(PSII) decreased, at most, by 20% in response to the same treatment. The decrease in QY(PSI) was observed only when the leaves were chilled at temperatures below 10° C, while such a marked temperature dependency was not observed for the decrease in QY(PSII). In the chilling treatment at 4° C for 5 h, the quantum flux density that was required to induce 50% loss of QY (PSI) was ca. 50 umol quanta·m–2·s–1. When the chilling treatment at 4° C in the light was conducted in an atmosphere of N2, photoinhibition of PSI was largely suppressed, while the damage to PSII was somewhat enhanced. The ferricyanide-oxidised minus ascorbate-reduced difference spectra and the light-induced absorbance changes at 700 nm obtained with the thylakoid suspension, indicated the loss of P700 to extents that corresponded to the decreases in QY(PSI). Accordingly, the decreases in QY(PSI) can largely be attributed to destruction of the PSI reaction centre itself. These results clearly show that, at least in cucumber, a typical chillingsensitive plant, PSI is much more susceptible to aerobic photoinhibition than PSII.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - P700 primary electron donor of PSI - PPFD photosynthetically active photon flux density - QY quantum yield We are grateful to invaluable comments by Prof. S. Katoh, K. Hikosaka and the members of our laboratory. We also thank A. Aoyama for technical assistance. This work was partly supported by the grants from the Ministry of Education, Science, and Culture, Japan, to I. Terashima (#03740342 and #04640621).  相似文献   

10.
Nie GY  Baker NR 《Plant physiology》1991,96(1):184-191
The effects of reductions in growth temperature on the development of thylakoids of maize (Zea mays var LG11) leaves are examined. Thylakoids isolated from mesophyll cells of leaves grown at 17° and 14°C, compared with 25°C, exhibited a decreased accumulation of many polypeptides, which was accompanied by a loss of activity of photosystems (PS) I and II. Probing the polypeptide profiles with a range of antibodies specific for thylakoid proteins demonstrated that a number of polypeptides encoded by the chloroplast genome failed to accumulate at low temperatures. Although thylakoid protein synthesis was reduced severely at 14°C compared with 25°C, major synthesis of both chloroplast and nuclear encoded polypeptides was detected. It is suggested that the lack of accumulation of some thylakoid proteins at low temperatures may be due to an inability to stabilize the proteins in the membranes. A number of thylakoid polypeptides were found to appear as the growth temperature was decreased. Analyses of pigments and polypeptides demonstrated that decreases in the photosystem reaction center core complexes occur relative to the light harvesting complex associated with PS II at reduced growth temperatures. Differential effects on the development of PSI and PSII were also observed, with PSII activity being preferentially reduced. Reductions in PSII content and activity occurred in parallel with decreases in the quantum yield and light-saturated rate of CO2 assimilation. Fractionation of thylakoid pigment-protein complexes showed that the ratio of monomeric:oligomeric form of the light harvesting complex associated with PSII increased at low growth temperature, which is consistent with a chill-induced modification of thylakoid organization. Many, but not all, of the characteristic changes in thylakoid protein metabolism, which were observed when leaves were grown at low temperatures in controlled environments, were identified in leaves of a field maize crop during the early growing season when low temperatures were experienced by the crop. Chill-induced perturbations of thylakoid development can occur in the field in temperate regions and may have implications for the photosynthetic productivity of the crop.  相似文献   

11.
Lutescens-1, a tobacco mutant with a maternally inherited dysfunction, displayed an unusual developmental phenotype. In vivo measurement of chlorophyll fluorescence revealed deterioration in photosystem II (PSII) function as leaves expanded. Analysis of thylakoid membrane proteins by polyacrylamide gel electrophoresis indicated the physical loss of nuclear- and chloroplast-encoded polypeptides comprising the PSII core complex concomitant with loss of activity. Freeze fracture electron micrographs of mutant thylakoids showed a reduced density, compared to wild type, of the EFs particles which have been shown previously to be the structural entity containing PSII core complexes and associated pigment-proteins. The selective loss of PSII cores from thylakoids resulted in a higher ratio of antenna chlorophyll to reaction centers and an altered 77 K chlorophyll fluorescence emission spectra; these data are interpreted to indicate functional isolation of light-harvesting chlorophyll a/b complexes in the absence of PSII centers. Examination of PSII reaction centers (which were present at lower levels in mutant membranes) by monitoring the light-dependent phosphorylation of PSII polypeptides and flash-induced O2 evolution patterns demonstrated that the PSII cores which were assembled in mutant thylakoids were functionally identical to those of wild type. We conclude that the lutescens-1 mutation affected the correct stoichiometry of PSII centers, in relation to other membrane constituents, by disrupting the proper assembly and maintenance of PSII complexes in lutescens-1 thylakoid membranes.  相似文献   

12.
With the aim of obtaining information on the degree of flexibility maintained in cyanobacteria in context with their phylogenetic position, Anacystis was grown in the presence of thiosulphate, oxidized in a photosystem I (PSI) dependent reaction (KM 7.4 × 10?3 M thiosulfate). Besides DBMIB, only o-phenanthroline and p-hydroxymercuribenzoate blocked thiosulphate-dependent PSI activity to some extent; iodonitrothymol, DCMU and cyanide had no influence. Growth of Anacystis in the presence of thiosulphate induced a reorganization of the photosynthetic apparatus characterized by a shift in the PSII/PSI ratio in favor of PSI, comparable to low light conditions. Capability for oxygenic photosynthesis never completely disappeared; structural elements of PSII were retained in the membrane to a certain degree. The antenna pigment system signalled high light under conditions of thiosulphate oxidation as judged from the ratio of phycocyanin to chlorophyll. Besides a shift in the ratio of PSII to PSI components, the polypeptide pattern of thylakoids from thiosulphate grown cells shows several additional components compared to the controls and, moreover, higher concentrations of some polypeptides present in the controls, particularly a Mr 41000 polypeptide. The process of thiosulphate oxidation appears bound to the thylakoid membrane.  相似文献   

13.
The photoinhibition of photosynthesis was investigated on intact attached leaves and isolated thylakoid membranes of Populus deltoides.Our studies demonstrate that in intact leaves photoinhibition takes place under high irradiance which is more pronounced at higher temperatures. No net loss of Dl and other proteins associated with photosystem II (PSII) were observed even after 64 % photoinhibition suggesting that the degradation of polypeptides associated with PSII is not the only key step responsible for photoinhibition as observed by other workers. Electron transport studies in isolated thylakoid membranes suggested water oxidation complex as one of the damaged site during high light exposure. The possible mechanisms of photoinhibition without net loss of D1 protein are discussed.  相似文献   

14.
We have studied the effect of grapevine leafroll infection on some features of the thylakoids from field grown grapevine (Vitis vinifera L.) leaves. Changes in photosynthetic pigments, soluble proteins, ribulose‐1,5‐bisphosphate carboxylase (RuBP), nitrate reductase, photosynthetic activities and thylakoid membrane proteins were investigated. The level of total chlorophyll (Chl) and carotenoids were reduced in virus‐infected leaves. Similar results were also observed for soluble proteins and RuBP case activity. The in vivo nitrate reductase activity was significantly reduced in infected leaves. Virus infection considerably decreased leaf net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (E) in grapevine leaves. When various photosynthetic activities were followed in isolated thylakoids, virus infection caused marked inhibition of whole chain and photosystem (PS) II activity while the inhibition of PSI activity was only marginal. The artificial exogenous electron donors, diphenyl carbazide and hydroxylamine (NH2OH) significantly restored the loss of PSII activity in infected leaves. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PSII activity in infected leaves could be due to the loss of 47, 43, 33, 28–25, 23 and 17 kDa polypeptides. It is concluded that virus infection inactivates the donor side of PSII. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water‐splitting complex was diminished significantly in infected leaves.  相似文献   

15.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

16.
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll–protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements. Dedicated to Prof. Zbigniew Kaniuga on the 25th anniversary of his initiation of studies on chilling-induced stress in plants.  相似文献   

17.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

18.
The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that β-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids.Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and β-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the photosynthetic apparatus, which is important for rapid recovery after rehydration.  相似文献   

19.
When chloroplast thylakoid membranes isolated from spinach leaves (Spinacia oleracea L. cv. Monatol) were frozen in media containing the predominant inorganic electrolytes of the chloroplast stroma, linear photosynthetic electron transport became progressively inhibited. After onset of freezing, both PSII- and PSI-mediated electron flow were inactivated almost to the same extent. Prolonged storage of the membranes in the frozen state increased damage to PSII relative to PSI activity. Under these conditions, a preferential injury of the water oxidation system was not observed. In thylakoids stored at 0 °C, PSI activity remained fairly unimpaired but inactivation of PSII occurred with strongest inhibition at the oxidizing side.The addition of low-molecular-weight cryoprotectants such as glycerol, sugars, certain amino acids and carbonic acids to thylakoid suspensions prior to freezing provided almost complete preservation of PSI activity and considerable but incomplete stabilization of PSII.Abbreviations BQ 1,4-benzoquinone - Chl chlorophyll - DAD 1,4-diamino-2,3,5,6-tetramethylbenzene - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DMBQ 2,5-dimethyl-p-benzoquinone - DPC 1,5-diphenylcarbazide - Hepes 4-(2-hydroxyethyl)-1-piperazineeth-anesulfonic acid - MV methylviologen - PD 1,4-diaminobenzene - SOD superoxide dismutase (EC 1.15.1.1) - TMHQ tetramethyl-p-hydroquinone - TMPD N,N,N,N-tetramethyl-1,4-diaminobenzene - Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol Dedicated to Professor Dr. Wilhelm Simonis, Würzburg, on the occasion of his 80th birthday  相似文献   

20.
Obokata J 《Plant physiology》1987,84(2):535-540
Synthesis and assembly of photosystems (PS) I and II polypeptides in etiochloroplasts isolated from greening wheat (Triticum aestivum L. cv Norin 61) seedlings were studied. The isolated etiochloroplasts synthesized PSI polypeptides of 66 and 15 kilodaltons, PSII polypeptides of 46 and 42 kilodaltons, and atrazine-binding 34 to 32 kilodalton polypeptide. Their assembly processes in the thylakoid membrane were studied by pulse-chase labeling with [35S]methionine, mild solubilization of the thylakoid membrane with Triton X-100, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis. The newly synthesized polypeptides of 66, 46, 42, 34, and 32 kilodaltons were first integrated into the complexes of 7.5, 5.9, 7.5, 6.3, and 7.5 Svedberg units, respectively, in 20 minutes. After the chase with excess amount of methionine for 100 min, they were found in complexes of 9.5, 9.1, 9.1, 9.1, and 9.1 Svedberg units, respectively. In this condition, stained polypeptides of PSI and PSII were found in the complexes of 11.1 and 10.3 Svedberg units, respectively. These results indicated that newly synthesized PSI or PSII polypeptides are integrated into intermediate complexes, but not complete complexes in the isolated etiochloroplasts. The relationship between the processing of the atrazine-binding 32 kilodalton polypeptide and its assembly into the PSII complex is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号