首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conduritol-B-epoxide, a compound structurally related to the substrates of external yeast beta-fructosidase (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26), is an active-site directed inhibitor of this enzyme. The inactivation is irreversible and first-order with respect to time and inhibitor concentration. From the kinetic data obtained, it is concluded that one molecule of inhibitor reacts with one molecule of the enzyme causing inactivation. The inactivation is prevented by the presence of substrates. The pH-dependence of inactivation shows two dissociating groups in the enzyme with pKa values 3.05 and 6.8 being involved in the inactivation process. A carboxylate at the active site with pKa 3.05 is suggested to be the reactive group with conduritol-B-epoxide.  相似文献   

2.
3.
Aspergillopeptidase B exhibits a strong preference for both the phenyl group and the carbobenzoxy moiety of carbobenzoxyphenylalanine methylester. The chloromethylketones of N6-tosyllysine and tosylphenylalanine do not inactivate the enzyme due to low binding affinities. Aspergillopeptidase B is slowly inactivated by the bromomethylketone of carbobenzoxyphenylalanine with an apparent second-order rate constant of 0.16 m?1 sec?1 at pH 7.0. A direct correspondence exists between the loss of activity, incorporation of tritiated carbobenzoxyphenylalanine, the disappearance of a histidine residue, and the appearance of a residue of Nr-carboxymethylhistidine. The rate of alkylation by carbobenzoxyphenylalanine is retarded by the competitive inhibitor N2-benzoylarginine.  相似文献   

4.
Affinity labeling of the polyphosphate binding site of hemoglobin   总被引:10,自引:0,他引:10  
  相似文献   

5.
Khopde S  Biswas EE  Biswas SB 《Biochemistry》2002,41(50):14820-14830
Primase is an essential DNA replication enzyme in Escherichia coli and responsible for primer synthesis during lagging strand DNA replication. Although the interaction of primase with single-stranded DNA plays an important role in primer RNA and Okazaki fragment synthesis, the mechanism of DNA binding and site selection for primer synthesis remains unknown. We have analyzed the energetics of DNA binding and the mechanism of site selection for the initiation of primer RNA synthesis on the lagging strand of the replication fork. Quantitative analysis of DNA binding by primase was carried out using a number of oligonucleotide sequences: oligo(dT)(25) and a 30 bp oligonucleotide derived from bacteriophage G4 origin (G4ori-wt). Primase bound both sequences with moderate affinity (K(d) = 1.2-1.4 x 10(-)(7) M); however, binding was stronger for G4ori-wt. G4ori-wt contained a CTG trinucleotide, which is a preferred site for initiation of primer synthesis. Analysis of DNA binding isotherms derived from primase binding to the oligonucleotide sequences by fluorescence anisotropy indicated that primase bound to DNA as a dimer, and this finding was further substantiated by electrophoretic mobility shift assays (EMSAs) and UV cross-linking of the primase-DNA complex. Dissection of the energetics involved in the primase-DNA interaction revealed a higher affinity of primase for DNA sequences containing the CTG triplet. This sequence preference of primase may likely be responsible for the initiation of primer synthesis in the CTG triplet sites in the E. coli lagging strand as well as in the origin of replication of bacteriophage G4.  相似文献   

6.
The exchangeable nucleotide binding site of platelet tubulin was labeled with [14C]p-fluorosulfonyl benzoylguanosine (FSBG). FSBG promoted polymerization of tubulin but depolymerization did not occur in the presence of this nucleoside analogue. GTP was able to block FSBG binding to tubulin. [14C]Iodoacetamide-treated tubulin which was first reacted with FSBG was digested with trypsin. The resultant peptides were analyzed by reverse phase high pressure liquid chromatography. One FSBG-labeled peptide could be identified both by its radioactivity and the characteristic UV absorbance spectrum associated with it. This may represent the exchangeable nucleotide site. A second peptide with a distinct nucleotide absorbance peak was found both in FSBG-treated and untreated tubulin preparations. This evidence is suggestive of the non-exchangeable nucleotide binding site.  相似文献   

7.
Affinity labeling of the virginiamycin S binding site on bacterial ribosome   总被引:1,自引:0,他引:1  
Virginiamycin S (VS, a type B synergimycin) inhibits peptide bond synthesis in vitro and in vivo. The attachment of virginiamycin S to the large ribosomal subunit (50S) is competitively inhibited by erythromycin (Ery, a macrolide) and enhanced by virginiamycin M (VM, a type A synergimycin). We have previously shown, by fluorescence energy transfer measurements, that virginiamycin S binds at the base of the central protuberance of 50S, the putative location of peptidyltransferase domain [Di Giambattista et al. (1986) Biochemistry 25, 3540-3547]. In the present work, the ribosomal protein components at the virginiamycin S binding site were affinity labeled by the N-hydroxysuccinimide ester derivative (HSE) of this antibiotic. Evidence has been provided for (a) the association constant of HSE-ribosome complex formation being similar to that of native virginiamycin S, (b) HSE binding to ribosomes being antagonized by erythromycin and enhanced by virginiamycin M, and (c) a specific linkage of HSE with a single region of 50S, with virtually no fixation to 30S. After dissociation of covalent ribosome-HSE complexes, the resulting ribosomal proteins have been fractionated by electrophoresis and blotted to nitrocellulose, and the HSE-binding proteins have been detected by an immunoenzymometric procedure. More than 80% of label was present within a double spot corresponding to proteins L18 and L22, whose Rfs were modified by the affinity-labeling reagent. It is concluded that these proteins are components of the peptidyltransferase domain of bacterial ribosomes, for which a topographical model, including the available literature data, is proposed.  相似文献   

8.
Pyridoxal 5'-phosphate (PLP) inhibits DNA polymerase activity of the intact multifunctional DNA polymerase alpha complex by binding at either of two sites which can be distinguished on the basis of differential substrate protection. One site (PLP site 1) corresponds to an important nucleotide-binding site which is distinct from the DNA polymerase active site and which appears to correspond to the DNA primase active site while the second site (PLP site 2) corresponds to the dNTP binding domain of the DNA polymerase active site. A method for the enzymatic synthesis of high specific activity [32P]PLP is described and this labeled PLP was used to identify the binding sites described above. PLP inhibition of DNA polymerase alpha activity was shown to involve the binding of only a few (one to two) molecules of PLP/molecule of DNA polymerase alpha, and this label is primarily found on the 148- and 46-kDa subunits although the 63-, 58-, and 49-kDa subunits are labeled to a lesser extent. Labeling of the 46-kDa subunit by [32P]PLP is the only labeling on the enzyme which is blocked or even diminished in the presence of nucleotide alone, and, therefore, this 46-kDa subunit contains PLP site 1. Labeling of the 148-kDa subunit is enhanced in the presence of template-primer, suggesting that this subunit undergoes a conformational change upon binding template-primer. Furthermore, labeling of the 148-kDa subunit is the only labeling on the enzyme which can be specifically blocked only by the binding of both template-primer and the correct dNTP in a stable ternary complex. Therefore, the 148-kDa subunit contains PLP site 2, which corresponds to the dNTP binding domain of the DNA polymerase active site.  相似文献   

9.
A label for the bilirubin binding sites of human serum albumin was synthesized by reacting 2 mol of Woodward's reagent K (N-ethyl-5-phenylisoxazolium-3'-sulfonate) with 1 mol of bilirubin. This yielded a water-soluble derivative in which both carboxyl groups of bilirubin were converted to reactive enol esters. Covalent labeling was achieved by reacting the label with human serum albumin under nitrogen at pH 9.4 and 20 degrees. Under the same conditions, no covalent binding to the monomers of several proteins could be demonstrated. The number of binding sites for bilirubin and the label were found to be the same, and competition experiments with bilirubin showed inhibition of covalent labeling. The absorption, fluorescence and CD spectra of the label in a complex with human serum albumin were similar to those of the bilirubin human serum albumin complex. However, following covalent attachment to the spectral properties were changed, indicating loss of conformational freedom of the chromophore. Labeling ratios were selected to result in the incorporation of less than 1 mol of label/mol of human serum albumin. Under these conditions, labeling is thought to occur primarily at the high affinity binding site.  相似文献   

10.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

11.
The interaction of Escherichia coli glutamine synthetase with the adenosine 5'-triphosphate analogue, 5'-p-fluorosulfonylbenzoyladenosine (5'-FSO2BzAdo), has been studied. This interaction results in the covalent attachment of the 5'-FSO2BzAdo to the enzyme with concomitant loss of catalytic activity. Although adenine nucleotides interact with glutamine synthetase at three distinct sites--a noncovalent AMP effector site, a regulatory site of covalent adenylylation, and the catalytic ATP/ADP binding site--our studies suggest that reaction with 5'-FSO2BzAdo occurs only at the active center. When glutamine synthetase was incubated with 5'-FSO2BzAdo, the decrease in catalytic activity obeyed pseudo-first order kinetics. The plot of the observed rate constant of inactivation versus the concentration of 5'-FSO2BzAdo was hyperbolic, consistent with reversible binding of the analogue to the enzyme prior to covalent attachment. Protection against inactivation was afforded by ATP and ADP; L-glutamate did not protect the enzyme against inactivation, but rather enhanced the rate of inactivation, consistent with the observations of others (Timmons, R. B., Rhee, S. G., Luterman, D. L., and Chock, P. B. (1974) Biochemistry 13, 4479-4485) that there is synergism in the binding of the two substrates to the enzyme. The incorporation of approximately 1.09 mol of the 5'-FSO2BzAdo/mol of glutamine synthetase subunit resulted in the total loss of enzymatic activity. The results suggest that 5'-FSO2BzAdo occupies the ATP binding site at the active center of glutamine synthetase and binds covalently to an amino acid residue nearby.  相似文献   

12.
Transducin (T), a guanine nucleotide binding regulatory protein composed of -, -, and -subunits, serves as an intermediary between rhodopsin and cGMP phosphodiesterase during signaling in the visual process. Pyridoxal 5-phosphate (PLP), a reagent that has been used to modify enzymes that bind phosphorylated substrates, was probed here as an affinity label for T. PLP inhibited the guanine nucleotide binding activity of T in a concentration dependent manner, and was covalently incorporated into the protein in the presence of [3H]NaBH4. Approximately 1 mol of 3H was bound per mol of T. GTP and GTP analogs appreciably hindered the incorporation of 3H to T, suggesting that PLP specifically modified the protein active site. Interestingly, PLP modified both the - and -subunits of T. Moreover, PLP in the presence of GDP behaved as a GTP analog, since this mixture was capable of dissociating T from T:photoactivated rhodopsin complexes.  相似文献   

13.
14.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

15.
The inactivation of sarcoplasmic reticulum ATPase by fluorescein isothiocyanate (FITC) was shown to have a hyperbolic dependence on the concentration of FITC. The results were quantitatively accounted for by a model in which the reagent first binds reversibly (Kf = 70 microM) to the ATPase and then reacts irreversibly (kmax = 0.8 and 2 min-1 in the absence and presence of 1 mM Mg2+, respectively) to form inactive enzyme. Comparison with the rate constant for the reaction of the model compound alpha-acetyllysine with FITC showed that the FITC-reactive lysyl side-chain of the ATPase is not unusually reactive, indicating that the specificity of the reaction is due to affinity labeling behavior of the reagent. This was supported by protection experiments using ATP, ADP, AdoPP[NH]P, ITP, and TNP-ATP, all of which displayed protection constants similar to their known binding constants to the active site of the ATPase. Both inorganic phosphate and orthovanadate were effective in preventing inactivation by FITC, and calcium only partially reversed the effect of these anions, implying the existence of a ternary complex such as Ca2.E.Pi. Since all ligands (ATP, ADP and Pi) which bind or react at the catalytic site protect it, only the unliganded form appears to bind and react with FITC. Addition of calcium to the MgATP complex of the ATPase caused an increase in the FITC inactivation rate, implying that during turnover there is a larger fraction of unliganded enzyme present, i.e., substrate binding is weaker (Ks is larger). Protection was also observed with fluorescein and two related dyes, eosin and erythrosin. Like FITC, the isothiocyanates of these dyes were effective inactivators. In separate experiments, these two dyes were shown to promote photoinactivation of the ATPase. ATP exerted a protective effect with a concentration dependence consistent with high-affinity active-site binding.  相似文献   

16.
9-beta-D-Arabinofuranosyladenosine triphosphate (araATP) is a potent inhibitor of DNA primase. Primase readily incorporates araATP into primers, and primers containing araAMP are then elongated by DNA polymerase alpha (pol alpha) upon addition of dNTPs. AraATP did not inhibit utilization of primers under conditions where the ability of pol alpha to elongate primers was independent of the dATP concentration. The fraction of primers elongated by pol alpha was reduced by araATP only when elongation was dependent upon the dATP concentration. When the Ki for primase was measured in terms of the inhibition of the synthesis of primers that can be utilized by pol alpha, we obtained Ki = 2.7 microM (37 degrees C) and 2.0 microM (25 degrees C). Inhibition was competitive with ATP. Inhibition of pol alpha activity by araATP was measured under conditions where primase-catalyzed primer synthesis was required for the pol alpha activity. The decreased pol alpha activity was due to primase inhibition, and at constant dATP, araATP inhibition was competitive with ATP and gave Ki = 1.2 microM, similar to the Ki for primase alone. Increasing the dATP concentration had no effect on inhibition. In combination with previously reported in vivo data, we conclude that DNA primase is the primary in vivo target of the arabinofuranosyl nucleotides, not pol alpha.  相似文献   

17.
1. Adenosine deaminase was inactivated by 9-(4-bromoacetamidobenzyl)-adenine (I) and 9-(2-bromoacetamidobenzyl)adenine (II), two affinity labels. 2. The stoichiometry of the reaction with reagent II is reported: 1 mol reagent is bound per mol inactive enzyme. Amino acid analysis of the 6 N HCl hydrolyzate of the inactive enzyme identified CM-histidine as the main alkylation product. This is the first evidence of the presence of a histidine in the active site region. 3. The alkylation rate and involved amino acid residues were studied for both reagents I and II, at pH 8 and 5.5. The particular reactivity of a lysine near or in the active site is discussed.  相似文献   

18.
19.
20.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号