首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the mechanism of capsaicin-mediated ROS generation in pancreatic cancer cells. The generation of ROS was about 4-6 fold more as compared to control and as early as 1 h after capsaicin treatment in BxPC-3 and AsPC-1 cells but not in normal HPDE-6 cells. The generation of ROS was inhibited by catalase and EUK-134. To delineate the mechanism of ROS generation, enzymatic activities of mitochondrial complex-I and complex-III were determined in the pure mitochondria. Our results shows that capsaicin inhibits about 2.5-9% and 5-20% of complex-I activity and 8-75% of complex-III activity in BxPC-3 and AsPC-1 cells respectively, which was attenuable by SOD, catalase and EUK-134. On the other hand, capsaicin treatment failed to inhibit complex-I or complex-III activities in normal HPDE-6 cells. The ATP levels were drastically suppressed by capsaicin treatment in both BxPC-3 and AsPC-1 cells and attenuated by catalase or EUK-134. Oxidation of mitochondria-specific cardiolipin was substantially higher in capsaicin treated cells. BxPC-3 derived ρ(0) cells, which lack mitochondrial DNA, were completely resistant to capsaicin mediated ROS generation and apoptosis. Our results reveal that the release of cytochrome c and cleavage of both caspase-9 and caspase-3 due to disruption of mitochondrial membrane potential were significantly blocked by catalase and EUK-134 in BxPC-3 cells. Our results further demonstrate that capsaicin treatment not only inhibit the enzymatic activity and expression of SOD, catalase and glutathione peroxidase but also reduce glutathione level. Over-expression of catalase by transient transfection protected the cells from capsaicin-mediated ROS generation and apoptosis. Furthermore, tumors from mice orally fed with 2.5 mg/kg capsaicin show decreased SOD activity and an increase in GSSG/GSH levels as compared to controls. Taken together, our results suggest the involvement of mitochondrial complex-I and III in capsaicin-mediated ROS generation and decrease in antioxidant levels resulting in severe mitochondrial damage leading to apoptosis in pancreatic cancer cells.  相似文献   

2.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

3.
Expression of HSV-1 genes leads to the induction of apoptosis in human epithelial HEp-2 cells but the subsequent synthesis of infected cell protein prevents the process from killing the cells. Thus, viruses unable to produce appropriate prevention factors are apoptotic. We now report that the addition of either a pancaspase inhibitor or caspase-9-specific inhibitor prevented cells infected with an apoptotic HSV-1 virus from undergoing cell death. This result indicated that HSV-1-dependent apoptosis proceeds through the mitochondrial apoptotic pathway. However, the pancaspase inhibitor did not prevent the release of cytochrome c from mitochondria, implying that caspase activation is not required for this induction of cytochrome c release by HSV-1. The release of cytochrome c was first detected at 9 hpi while caspase-9, caspase-3 and PARP processing were detected at 12 hpi. Finally, Bax accumulated at mitochondria during apoptotic, but not wild type HSV-1 infection. Together, these findings indicate that HSV-1 blocks apoptosis by precluding mitochondrial cytochrome c release in a caspase-independent manner and suggest Bax as a target in infected human epithelial cells.  相似文献   

4.
Telomerase activation represents an early step in carcinogenesis. Increased telomerase activity in cervical cancer suggests a potential target for the development of novel therapeutic drugs. The aim of this study is to investigate the impact of telomerase activity on the biological features of HeLa cells and the possible mechanisms of enhanced apoptosis rate induced by sodium butyrate after telomerase inhibition. We introduced vectors encoding dominate negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker into HeLa cells. Thus we assessed the biological effects of telomerase activity on telomere length, cell proliferation, chemosensitivity and radiosensitivity. In order to understand the mechanisms in which DN-hTERT enhances the apoptosis induced by sodium butyrate, we detected the release status of cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Ectopic expression of DN-hTERT resulted in inhibition of telomerase activity, reduction of telomere length, decreased colony formation ability, and loss of tumorigenicity in nude mice. Moreover, DN-hTERT transfected HeLa cells with shortened telomeres were more susceptible to multiple chemotherapeutic agents and radiation. WT-hTERT transfected HeLa cells with longer telomeres exhibited resistance to radiation and chemotherapeutic agents. Our data demonstrate that elevated release level of cytochrome c and AIF from mitochondria might contribute to the enhanced apoptosis in DN-hTERT transfected HeLa cells after treatment with sodium butyrate. Inhibition of telomerase might serve as a promising adjunctive therapy combined with conventional therapy in cervical cancer. Both of them contributed equally to this work.  相似文献   

5.
Selenite-induced oxidative stress and its relationship to mitochondrial apoptosis was studied in human adenocarcinoma HT-29 cells. It is shown that selenite induces caspase-dependent apoptosis, which is mediated by mitochondria via released cytochrome c, apoptosis-inducing factor (AIF) and Smac/Diablo. Selenite activates stress kinases p38 and JNK while suppressing reduced glutathione (GSH) and thioredoxin reductase (TrxR) levels, transiently inducing heme oxygenase (HO-1) system as well as reducing Akt expression. Pre-treatment of cells with selected antioxidants and stress kinase inhibitors significantly prevented selenite-induced cell death, thereby implicating oxidative stress as a direct (Bax) as well as indirect (via kinases) cause of HT-29 cells demise. These results thus demonstrate for the first time active proapoptotic and anti-survival effects of selenite in colon cancer cells.  相似文献   

6.
7.
The synthetic retinoid-related molecule CD437-induced apoptosis in human epithelial airway respiratory cells: the 16HBE bronchial cell line and normal nasal epithelial cells. CD437 caused apoptosis in S-phase cells and cell cycle arrest in S phase. Apoptosis was abolished by caspase-8 inhibitor z-IETD-fmk which preserved S-phase cells but was weakly inhibited by others selective caspase-inhibitors, indicating that caspase-8 activation was involved. z-VAD and z-IETD prevented the nuclear envelope fragmentation but did not block the chromatin condensation. The disruption of mitochondrial transmembrane potential was also induced by CD437 treatment. The translocation of Bax to mitochondria was demonstrated, as well as the release of cytochrome c into the cytosol and of apoptosis-inducing factor (AIF) translocated into the nucleus. z-VAD and z-IETD did not inhibit mitochondrial depolarization, Bax translocation or release of cytochrome c and AIF from mitochondria. These results suggest that CD437-induced apoptosis is executed by two converging pathways. AIF release is responsible for chromatin condensation, the first stage of apoptotic cell, via a mitochondrial pathway independent of caspase. But final stage of apoptosis requires the caspase-8-dependent nuclear envelope fragmentation. In addition, using SP600125, JNK inhibitor, we demonstrated that CD437 activates the JNK-MAP kinase signaling pathway upstream to mitochondrial and caspase-8 pathways. Conversely, JNK pathway inhibition, which suppresses S-phase apoptosis, did not prevent cell cycle arrest within S phase, confirming that these processes are triggered by distinct mechanisms.  相似文献   

8.
To investigate the role of mitogen-activated protein kinase (MAPK) and downstream events in cadmium (Cd)-induced neuronal apoptosis executed via the mitochondrial apoptotic pathway, this study used the PC-12 cell line as a neuronal model. The result showed that Cd significantly decreased cell viability and the Bcl-2?/?Bax ratio and increased the percentage of apoptotic cells, release of cytochrome c, caspase-3, and poly(ADP-ribose) polymerase cleavage, and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G. In addition, exposure to Cd-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2?/?Bax ratio and cytochrome c release and suppressed caspase-3 and poly(ADP-ribose) polymerase cleavage and AIF and endonuclease G nuclear translocation. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathway played an important role in Cd-induced PC12 cells apoptosis.  相似文献   

9.
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) decreases the growth of certain cancer cells. In the present study, we found that six different human pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-2, HPAF-II, MIA PaCa-2, and PANC-1) expressed PPAR-gamma m-RNA and synthesized the protein. The endogenous and exogenous PPAR-gamma ligands 15-deoxy-d12,14-prostaglandin J(2) (15-PGJ(2)) and ciglitazone decreased cell number, cell viability, and increased floating/attached ratio, in a time- and dose-dependent fashion. 15-PGJ(2) increased intracellular nucleosome concentration after 6 h, but did not increase caspase-3 activity even after 96 h. Combined treatment with both 15-PGJ(2) and the caspase-3 inhibitor DEVD-CHO had no effect on cell viability, but the general caspase inhibitor ZVAD-FMK reduced 15-PGJ(2)-induced apoptosis. We concluded that the six human pancreatic cancer cells tested all expressed PPAR-gamma receptor, and treatment with PPAR-gamma agonists decreased cell viability and growth in a time- and dose-dependent manner. These effects were partially mediated by induction of caspase-3 independent apoptosis.  相似文献   

10.
Flavonoids have antioxidant and antitumor promoting effects. Rhus verniciflua Stokes (RVS) is a flavonoid-rich herbal medicine that has long been used in Korea as both a food additive and antitumor agent. It was previous reported that a purified flavonoid fraction prepared from RVS, herein named RCMF (the RVS chloroform-methanol fraction), inhibited the proliferation and induced apoptosis in human osteosarcoma (HOS) cells. This study examined the mechanisms involved in the RCMF-mediated apoptosis in HOS cells. RCMF was shown to be capable of inducing apoptosis in HOS cells by inducing p53 in the cells resulting in the decrease in Bcl-2 level, activation of Bax, and cytoplasmic release of cytochrome c, which led to the translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) into the nucleus. However, the RCMF-induced apoptosis was suppressed by transfecting the cells with antisense p53 oligonucleotides but not by treating them with a MAPK or caspase inhibitor. This suppression occurred through the regulation of Bcl-2 members as well as by preventing the nuclear translocation of the mitochondrial apoptogenic factors. Overall, it appears that p53-mediated mitochondrial stress and the nuclear translocation of AIF and EndoG are mainly required for the apoptosis induced by RCMF.  相似文献   

11.
Photodynamic therapy (PDT) is a cancer treatment based on the interaction of a photosensitizer, light and oxygen. PDT with the endogenous photosensitizer, protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) or its derivatives is a modification of this treatment modality with successful application in dermatology. However, the mechanism of cell destruction by ALA-PDT has not been elucidated. In this study a human T-cell lymphoma Jurkat cell line was treated with PDT using hexaminolevulinate (HAL, hexylester of ALA). Four hours following treatment nearly 80% of the cells exhibited typical apoptotic features. Mitochondrial pro-apoptotic proteins were evaluated by Western blots in subcellular fractionated samples. PDT caused cytosolic translocation of cytochrome c and nuclear redistribution of apoptosis-inducing factor (AIF), but the release of mitochondrial Smac/DIABLO, Omi/HtrA2 and EndoG was not observed. The release of cytochrome c was followed by the cleavage of caspase-9 and caspase-3 as well as its downstream substrates, together with oligonucleosomal DNA fragmentation. The pan-caspases inhibitor, z-VAD.fmk, prevented oligonucleosomal DNA fragmentation, but failed to inhibit PDT-mediated apoptosis. The apoptotic induction by AIF-mediated caspase-independent pathway was also found after HAL-PDT with large-scale DNA fragmentation in the presence of z-VAD.fmk. These results demonstrate that cytochrome c-mediated caspase-dependent pathway and AIF-induced caspase-independent pathway are simultaneously involved in the apoptotic induction by PDT. When the cytochrome c-induced caspase-dependent pathway is blocked, the cells go into apoptosis via AIF-mediated pathway, clearly demonstrating that the cytochrome c-mediated caspase-dependent pathway is not required for such apoptotic induction. This finding may have an impact on improved PDT effectiveness.  相似文献   

12.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

13.
Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh) and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2) and cell cycle (cyclin D1, CDK2, and CDK6), and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax). In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8), and metastasis (MMP-2 and MMP-9) in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT) by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and Shh pathways, and can be developed for the treatment and/or prevention of pancreatic cancer.  相似文献   

14.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   

15.
Cadmium (Cd) is an extremely toxic metal capable of severely damaging several organs, including the brain. Studies have shown that Cd induces neuronal apoptosis partially by activating the mitogen-activated protein kinase (MAPK) pathways. However, the underlying mechanism of MAPK involving the mitochondrial apoptotic pathway in neurons remains unclear. In this study, primary rat cerebral cortical neurons were exposed to Cd, which significantly decreased cell viability and the B-cell lymphoma 2/Bcl-2 associate X protein (Bcl-2/Bax) ratio and increased the percentage of apoptotic cells, release of cytochrome c, cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and nuclear translocation of apoptosis-inducing factor (AIF). In addition, Cd induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2/Bax ratio, release of cytochrome c, cleavages of caspase-3 and PARP, and nuclear translocation of AIF. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathways play important roles in Cd-induced neuronal apoptosis.  相似文献   

16.
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on monocyte, we infected human U937 cells with the P. aeruginosa strain in vitro. To explore the expression of Bcl-2 and Bax as well as caspase-3/9 activation in the apoptosis of human U937 cells induced by P. aeruginosa, Hoechst 33258 staining and Giemsa staining as well as Flow cytometry analysis were used to determine the rate of apoptosis, and the expressions of Bcl-2 and Bax were assayed by RT-PCR and Western blotting respectively. Bax protein conformation change was assayed by immunoprecipitation. Cytochrome c release was measured by Western blotting. Moreover, exposure of U937 cells to P. aeruginosa measured caspase-3/9 activity. It was found that the apoptosis of human U937 cells could be induced by Pseudomonas aeruginosa in a dose- and time-dependent manner. Also, there were a tendency of alterations with an increased expression level of Bax and a reduced expression level of Bcl-2, increased levels of cytochrome c release, and also with an increased activation of caspase-3/9 and Bax protein conformation change. For the evaluation of the role of caspases, caspase-3/9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK respectively were used. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked P. aeruginosa-induced U937 apoptosis. It is concluded that P. aeruginosa can induce apoptosis with an up-regulated expression of Bax and a down-regulated expression of Bcl-2, which resulted in increased levels of cytochrome c release and increased caspase-3 and -9 in human U937 cells.  相似文献   

17.
High incidence of lymph node spread and distant metastasis make poor prognosis in human nasopharyngeal carcinoma (NPC). Therefore, better treatments for NPC are needed. This study investigated the anticancer activity of 6-O-angeloylenolin, a plant-derived sesquiterpene lactone, on human nasopharyngeal cancer (CNE) cells. 6-O-Angeloylenolin was found to significantly inhibit the proliferation of CNE cells. The rate of inhibition was comparable to that of cisplatin, a well known chemotherapeutic agent used to treat NPC. Further mechanistic studies revealed that 6-O-angeloylenolin caused cell-cycle arrest in the S and G2/M phases and, subsequently, the induction of apoptosis. Rapid repressions of cyclin D1, cyclin D3, p27, cdc25c and p-cdc25c (Ser216) were observed after 1-h treatment, followed by decreases in the expression of CDK4, cdc2 and p-cdc2 (Tyr15) after 12 h. Down-regulations of p-Rb (Ser780), p21Waf1/Cip1, cyclin A, and cyclin E were also detected as later events. Two early events that marked the occurrence of apoptosis were phosphatidylserine exposure and mitochondria membrane potential depletion, which occurred after 12 h of treatment, while a sub-G1 peak was also detected after 36-h treatment. Apoptosis induction was further confirmed by other apoptotic features, including nuclear fragmentation, and PARP cleavage. Moreover, 6-O-angeloylenolin caused the release of cytochrome c and AIF to the cytosol by regulating the expression of the Bcl-2 family proteins. However, pretreatment of the general caspase inhibitor failed to attenuate the apoptosis induction effect, suggesting that apoptosis induction of 6-O-angeloylenolin was independent of caspase activation. While 6-O-angeloylenolin also triggered the activation of Akt, ERK and JNK, only the JNK inhibitor significantly decreased the extent of cell death and apoptosis in CNE cells. Taken together, these results suggest the potential applicability of 6-O-angeloylenolin as a candidate for NPC treatment.  相似文献   

18.
R Prasad  M Vaid  SK Katiyar 《PloS one》2012,7(8):e43064
Pancreatic cancer is an aggressive malignancy that is frequently diagnosed at an advanced stage with poor prognosis. Here, we report the chemotherapeutic effects of bioactive proanthocyanidins from grape seeds (GSPs) as assessed using In Vitro and In Vivo models. Treatment of human pancreatic cancer cells (Miapaca-2, PANC-1 and AsPC-1) with GSPs In Vitro reduced cell viability and increased G2/M phase arrest of the cell cycle leading to induction of apoptosis in a dose- and time-dependent manner. The GSPs-induced apoptosis of pancreatic cancer cells was associated with a decrease in the levels of Bcl-2 and Bcl-xl and an increase in the levels of Bax and activated caspase-3. Treatment of Miapaca-2 and PANC-1 cells with GSPs also decreased the levels of phosphatidylinositol-3-kinase (PI3K) and phosphorylation of Akt at ser(473). siRNA knockdown of PI3K from pancreatic cancer cells also reduced the phosphorylation of Akt. Further, dietary administration of GSPs (0.5%, w/w) as a supplemented AIN76A control diet significantly inhibited the growth of Miapaca-2 pancreatic tumor xenografts grown subcutaneously in athymic nude mice, which was associated with: (i) inhibition of cell proliferation, (ii) induction of apoptosis of tumor cells, (iii) increased expression of Bax, reduced expression of anti-apoptotic proteins and activation of caspase-3-positive cells, and (iv) decreased expression of PI3K and p-Akt in tumor xenograft tissues. Together, these results suggest that GSPs may have a potential chemotherapeutic effect on pancreatic cancer cell growth.  相似文献   

19.
《Free radical research》2013,47(11):1393-1405
Abstract

Oridonin, a diterpenoid compound, extracted and purified from Rabdosia rubescen has been reported to have cytotoxic effect on tumour cells through apoptosis, and tyrosine kinase pathways are involved in these processes. A specific epidermal growth factor receptor (EGFR) inhibitor AG1478 was used to examine the relationship between EGFR signal pathways and oridonin-induced apoptosis and autophagy in EGFR abundant human epidermoid carcinoma A431 cells. Inhibition of EGFRaugmented oridonin-induced A431 cell apoptosis, while the changes of expression of downstream proteins, Bcl-2, Bcl-xL, Bax, cytochrome c, pro-caspase-3, Fas, FADD and pro-caspase-8 suggested that both the intrinsic and extrinsic apoptotic pathways are involved in these processes. Pretreatment with AG1478 aggravated oridonin-induced loss of mitochondrial membrane potential (MMP) and increased ROS generation in A431 cells, while a ROS scavenger, N-acetylcysteine (NAC) completely reversed oridonin- and AG1478-induced ROS generation and apoptosis. Therefore, AG1478 augmented oridonin-induced apoptosis by enhancing oxidative stress. Pretreatment with AG1478 decreased the expression of downstream MAPK proteins ERK, JNK and P38 and their phosphorylated forms to varying degrees compared with oridonin alone treatment. Then after administration of ERK, JNK and P38 inhibitors, only JNK inhibitor SP600125 effectively augmented oridonin-induced apoptosis and ROS generation. Therefore, in EGFR downstream pathways, JNK played a major role in preventing oridonin-induced apoptosis. Autophagy antagonised apoptosis and exerted a protective effect in A431 cells, and both AG1478 and SP600125 decreased oridonin-induced autophagy. Inhibition of EGFR augmented oridonin-induced apoptosis and this was caused by enhanced oxidative stress, and JNK played a major protective role by increasing autophagy, leading to antagonising apoptosis and ROS generation.  相似文献   

20.
The C-Jun N-terminal Kinase (JNK) inhibitor SP600125 is widely used to inhibit the JNK-mediated Bax activation and cell apoptosis. However, this report demonstrates that SP600125 synergistically enhances the dihydroartemisinin (DHA)-induced human lung adenocarcinoma cell apoptosis by accelerating Bax translocation and subsequent intrinsic apoptotic pathway involving mitochondrial membrane depolarization, cytochrome c release, caspase-9 and caspase-3 activation. The dynamical analysis of GFP-Bax mobility inside single living cells using fluorescence recovery after photobleaching revealed that SP600125 aggravated the DHA-induced decrease of Bax mobility and Bax translocation. These results for the first time present a novel pro-apoptotic action of SP600125 in DHA-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号