首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Frabin, together with, at least, FGD1, FGD2, FGD3 and FGD1-related Cdc42-GEF (FRG), is a member of a family of Cdc42-specific gua-nine nucleotide exchange factors (GEFs). These proteins have multiple phosphoinositide-binding domains, including two pleckstrin homology (PH) domains and an FYVE or FERM domain. It is likely that they couple the actin cytoskeleton with the plasma membrane. Frabin associates with a specific actin structure(s) and induces the direct activation of Cdc42 in the vicinity of this structure(s), resulting in actin reorganization. Furthermore, frabin associates with a specific membrane structure(s) and induces the indirect activation of Rac in the vicinity of this structure(s), resulting in the reorganization of the actin cytoskeleton. This reorganization of the actin cytoskeleton induces cell shape changes such as the formation of filopodia and lamellipodia.  相似文献   

2.
Cdc42 is a member of the Rho family of GTPases and plays an important role in the regulation of actin cytoskeletal organization. Activation of Cdc42 and associated signal transduction cascades are dependent upon proper localization of this GTPase. The studies described herein address the hypothesis that Rho GDP-dissociation inhibitor, RhoGDI, plays an essential role in the translocation of Cdc42 to signaling complexes at the plasma membrane and is essential for Cdc42-mediated actin cytoskeletal rearrangements. An activating mutant of Cdc42 that is RhoGDI-binding defective (Cdc42(G12V/R66E)) is characterized and used as a tool to study the functional importance of the Cdc42-RhoGDI interaction. Overexpression of mycCdc42(G12V/R66E) in COS-7 cells results in actin cytoskeletal rearrangements that are indistinguishable from those stimulated by overexpression of mycCdc42(G12V). In addition, the G12V activating mutant of Cdc42 was overexpressed in mesangial cells that are null for RhoGDI expression. MycCdc42(G12V) stimulation of filopodia formation in these cells was indistinguishable from that observed in wild-type mesangial cells. Taken together, the results presented herein indicate that although RhoGDI is a critical regulator of guanine nucleotide binding, cycling of Cdc42 between membranes and the cytosol and cellular transformation, it is not essential for Cdc42-mediated organization of the actin cytoskeleton.  相似文献   

3.
Polarized delivery and incorporation of proteins and lipids to specific domains of the plasma membrane is fundamental to a wide range of biological processes such as neuronal synaptogenesis and epithelial cell polarization. The exocyst complex is specifically localized to sites of active exocytosis and plays essential roles in secretory vesicle targeting and docking at the plasma membrane. Sec3p, a component of the exocyst, is thought to be a spatial landmark for polarized exocytosis. In a search for proteins that regulate the localization of the exocyst in the budding yeast Saccharomyces cerevisiae, we found that certain cdc42 mutants affect the polarized localization of the exocyst proteins. In addition, we found that these mutant cells have a randomized protein secretion pattern on the cell surface. Biochemical experiments indicated that Sec3p directly interacts with Cdc42 in its GTP-bound form. Genetic studies demonstrated synthetically lethal interactions between cdc42 and several exocyst mutants. These results have revealed a role for Cdc42 in exocytosis. We propose that Cdc42 coordinates the vesicle docking machinery and the actin cytoskeleton for polarized secretion.  相似文献   

4.
Guidance molecules steer growth cones to their targets by attracting or repelling them. Turning in a new direction requires remodeling of the growth cone and bending of the axon. This depends upon reorganization of actin filaments and microtubules, which are the primary cytoskeletal components of growth cones. This article discusses how these cytoskeletal components induce turning. The importance of each component as well as how interactions between them result in axon guidance is discussed. Current evidence shows that microtubules are influenced by both the organization and dynamics of actin filaments in the peripheral domain of growth cones. Cytoskeletal models for repulsive and attractive turning are presented. Molecular candidates that may link actin filaments with microtubules are suggested and potential signal transduction pathways that allow these cytoskeletal components to affect each other are discussed.  相似文献   

5.
Squamous cell carcinoma (SCC) antigen, including intracellular serine protease inhibitors, is widely used as a laboratory marker for cancers of squamous cell origin. Clinical evidences suggest that increased tissue-expression of SCC antigen predicts an invasive phenotype of cancer cells. Herein, we demonstrated that over-expression of SCC antigen increased the rate of EGF-stimulated cell migration. In the search for the underlying molecular mechanism, we have discovered that SCC antigen was translocated to the plasma membrane upon EGF stimulation and co-localized with polymerized-actin at lamellipodia. We further showed that, co-expression of Cdc42, a downstream target of the EGF receptor, enhanced translocation of the SCC antigen, while co-expression of dominant-inhibitory Cdc42 diminished its translocation. These results suggest that EGF-Cdc42 signal regulates the translocation of SCC antigen to the plasma membrane. Lamellipodia at the leading edge might be a site of action of SCC antigen.  相似文献   

6.
Cdc42 is a Rho-family GTPase that in yeast is important in establishing polarized bud growth. Here we show that Cdc42 is also essential in establishing and maintaining polarity in epithelial cells. Functional deletion of Cdc42 in Madin-Darby canine kidney (MDCK) cells results in the selective depolarization of basolateral membrane proteins; the polarity of apical proteins remains unaffected. This phenotype does not reflect major alterations in the actin cytoskeleton, but rather results from the selective inhibition of membrane traffic to the basolateral plasma membrane in both the endocytic and the secretory pathways. Thus, Cdc42 plays a critical part in epithelial-cell polarity, by, unexpectedly, regulating the fidelity of membrane transport.  相似文献   

7.
The dynamic regulation of polarized cell growth allows cells to form structures of defined size and shape. We have studied the regulation of polarized growth using mating yeast as a model. Haploid yeast cells treated with high concentration of pheromone form successive mating projections that initiate and terminate growth with regular periodicity. The mechanisms that control the frequency of growth initiation and termination under these conditions are not well understood. We found that the polarisome components Spa2, Pea2, and Bni1 and the Cdc42 regulators Cdc24 and Bem3 control the timing and frequency of projection formation. Loss of polarisome components and mutation of Cdc24 decrease the frequency of projection formation, while loss of Bem3 increases the frequency of projection formation. We found that polarisome components and the cell fusion proteins Fus1 and Fus2 are important for the termination of projection growth. Our results define the first molecular regulators that control the timing of growth initiation and termination during eukaryotic cell differentiation.  相似文献   

8.
Biosynthetic cargo is transported away from the Golgi in vesicles via microtubules. In the cell periphery the vesicles are believed to engage actin and then dock to fusion sites at the plasma membrane. Using dual-color total internal reflection fluorescence microscopy, we observed that microtubules extended within 100 nm of the plasma membrane and post-Golgi vesicles remained on microtubules up to the plasma membrane, even as fusion to the plasma membrane initiated. Disruption of microtubules eliminated the tubular shapes of the vesicles and altered the fusion events: vesicles required multiple fusions to deliver all of their membrane cargo to the plasma membrane. In contrast, the effects of disrupting actin on fusion behavior were subtle. We conclude that microtubules, rather than actin filaments, are the cytoskeletal elements on which post-Golgi vesicles are transported until they fuse to the plasma membrane.  相似文献   

9.
The Cdc42p GTPase controls polarized growth and cell cycle progression in eukaryotes from yeasts to mammals, and its precise subcellular localization is essential for its function. To examine the cell cycle-specific targeting of Cdc42p in living yeast cells, a green fluorescent protein (GFP)-Cdc42 fusion protein was used. In contrast to previous immunolocalization data, GFP-Cdc42p was found at the plasma membrane around the entire cell periphery and at internal vacuolar and nuclear membranes throughout the cell cycle, and it accumulated or clustered at polarized growth sites, including incipient bud sites and mother-bud neck regions. These studies also showed that C-terminal CAAX and polylysine domains were sufficient for membrane localization but not for clustering. Time-lapse fluorescence microscopy showed that GFP-Cdc42p clustered at the incipient bud site prior to bud emergence and at the mother-bud neck region postanaphase as a diffuse, single band and persisted as two distinct bands on mother and daughter cells following cytokinesis and cell separation. Initial clustering occurred immediately prior to actomyosin ring contraction and persisted postcontraction. These results suggest that Cdc42p targeting occurs through a novel mechanism of membrane localization followed by cell cycle-specific clustering at polarized growth sites.  相似文献   

10.
Müller O  Johnson DI  Mayer A 《The EMBO journal》2001,20(20):5657-5665
Membrane fusion reactions have been considered to be primarily regulated by Rab GTPases. In the model system of homotypic vacuole fusion in the yeast Saccharomyces cerevisiae, we show that Cdc42p, a member of the Rho family of GTPases, has a direct role in membrane fusion. Genetic evidence suggested a relationship between Cdc42p and Vtc1p/Nrf1p, a central part of the vacuolar membrane fusion machinery. Vacuoles from cdc42 temperature-sensitive mutants are deficient for fusion at the restrictive temperature. Specific amino acid changes on the Cdc42p protein surface in these mutants define the putative interaction domain that is crucial for its function in membrane fusion. Affinity-purified antibodies to this domain inhibited the in vitro fusion reaction. Using these antibodies in kinetic analyses and assays for subreactions of the priming, docking and post-docking phase of the reaction, we show that Cdc42p action follows Ypt7p-dependent tethering, but precedes the formation of trans-SNARE complexes. Thus, our data define an effector binding domain of Cdc42p by which it regulates the docking reaction of vacuole fusion.  相似文献   

11.
Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.  相似文献   

12.
Actin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes. Since T cells from Rlk-/-, Itk-/-, and Rlk-/- x Itk-/- mice have defects in signaling and development, we asked whether Itk or Rlk function in actin polymerization at the immune synapse. We find that Itk-/- and Rlk-/- x Itk-/- T cells are defective in actin polymerization and conjugate formation in response to antigen-pulsed APCs. Itk functions downstream of the TCR, since similar defects were observed upon TCR engagement alone. Using conformation-specific probes, we show that although the recruitment of WASP and Arp2/3 complex to the immune synapse proceeds normally, the localized activation of Cdc42 and WASP is defective. Finally, we find that the defect in Cdc42 activation likely stems from a requirement for Itk in the recruitment of Vav to the immune synapse. Our results identify Itk as a key element of the pathway leading to localized actin polymerization at the immune synapse.  相似文献   

13.
We investigated the motion of filopodia and actin bundles in lamellipodia of motile cells, using time-lapse sequences of polarized light images. We measured the velocity of retrograde flow of the actin network and the lateral motion of filopodia and actin bundles of the lamellipodium. Upon noting that laterally moving filopodia and actin bundles are always tilted with respect to the direction of retrograde flow, we propose a simple geometric model for the mechanism of lateral motion. The model establishes a relationship between the speed of lateral motion of actin bundles, their tilt angle with respect to the direction of retrograde flow, and the speed of retrograde flow in the lamellipodium. Our experimental results verify the quantitative predictions of the model. Furthermore, our observations support the hypothesis that lateral movement of filopodia is caused by retrograde flow of tilted actin bundles and by their growth through actin polymerization at the tip of the bundles inside the filopodia. Therefore we conclude that the lateral motion of tilted filopodia and actin bundles does not require a separate motile mechanism but is the result of retrograde flow and the assembly of actin filaments and bundles near the leading edge of the lamellipodium.  相似文献   

14.
Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P2 specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.  相似文献   

15.
Toca-1 (transducer of Cdc42-dependent actin assembly) interacts with the Cdc42·N-WASP and Abi1·Rac·WAVE F-actin branching pathways that function in lamellipodia formation and cell motility. However, the potential role of Toca-1 in these processes has not been reported. Here, we show that epidermal growth factor (EGF) induces Toca-1 localization to lamellipodia, where it co-localizes with F-actin and Arp2/3 complex in A431 epidermoid carcinoma cells. EGF also induces tyrosine phosphorylation of Toca-1 and interactions with N-WASP and Abi1. Stable knockdown of Toca-1 expression by RNA interference has no effect on cell growth, EGF receptor expression, or internalization. However, Toca-1 knockdown cells display defects in EGF-induced filopodia and lamellipodial protrusions compared with control cells. Further analyses reveal a role for Toca-1 in localization of Arp2/3 and Abi1 to lamellipodia. Toca-1 knockdown cells also display a significant defect in EGF-induced motility and invasiveness. Taken together, these results implicate Toca-1 in coordinating actin assembly within filopodia and lamellipodia to promote EGF-induced cell migration and invasion.  相似文献   

16.
Rho-type GTPases control many cytoskeletal rearrangements, but their regulation remains poorly understood. Here, we show that in S. cerevisiae, activation of the CDK Cdc28-Cln2 at bud emergence triggers relocalization of Cdc24, the GEF for Cdc42, from the nucleus to the polarization site, where it is stably maintained by binding to the adaptor Bem1. Locally activated Cdc42 then polarizes the cytoskeleton in a manner dependent on its effectors Bni1 and the PAK-like kinase Cla4. In addition, Cla4 induces phosphorylation of Cdc24, leading to its dissociation from Bem1 at bud tips, thereby ending polarized bud growth in vivo. Our results thus suggest a dynamic temporal and spatial regulation of the Cdc42 module: Cdc28-Cln triggers actin polarization by activating Cdc42, which in turn restricts its own activation via a negative feedback loop acting on its GEF Cdc24.  相似文献   

17.
Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.  相似文献   

18.
In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) is a potent regulator of cell growth and differentiation in many cell types. The Smad signaling pathway constitutes a main signal transduction route downstream of TGF-beta receptors. We studied TGF-beta-induced rearrangements of the actin filament system and found that TGF-beta 1 treatment of PC-3U human prostate carcinoma cells resulted in a rapid formation of lamellipodia. Interestingly, this response was shown to be independent of the Smad signaling pathway; instead, it required the activity of the Rho GTPases Cdc42 and RhoA, because ectopic expression of dominant negative mutant Cdc42 and RhoA abrogated the response. Long-term stimulation with TGF-beta 1 resulted in an assembly of stress fibers; this response required both signaling via Cdc42 and RhoA, and Smad proteins. A known downstream effector of Cdc42 is p38(MAPK); treatment of the cells with the p38(MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(pyridyl)1H-imidazole (SB203580), as well as ectopic expression of a kinase-inactive p38(MAPK), abrogated the TGF-beta-induced actin reorganization. Moreover, treatment of cells with the inhibitors of the RhoA target-protein Rho-associated coiled-coil kinase (+)-R-trans-4-(aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide (Y-27632) and 1-5(-isoquinolinesulfonyl)homopiperazine (HA-1077), as well as ectopic expression of kinase-inactive Rho coiled-coil kinase-1, abrogated the TGF-beta 1-induced formation of stress fibers. Collectively, these data indicate that TGF-beta-induced membrane ruffles occur via Rho GTPase-dependent pathways, whereas long-term effects require cooperation between Smad and Rho GTPase signaling pathways.  相似文献   

20.
Formation of the nervous system requires that neuronal growth cones follow specific paths and then stop at recognition signals, sensed at the growth cone's leading edge. We used antibody-coated gold particles viewed by video-enhanced differential interference contrast microscopy to observe the distribution and movement of two cell surface molecules, N-CAM and the 2A1 antigen, on growth cones of cultured cortical neurons. Gold particles are occasionally transported forward at 1-2 microns/s to the leading edge where they are trapped but continue to move. Concentration at the edge persists after cytochalasin D treatment or ATP depletion, but active movements to and along edges cease. We also observed a novel outward movement of small cytoplasmic aggregates at 1.8 microns/s in filopodia. We suggest that active forward transport and trapping involve reversible attachment of antigens to and transport along cytoskeletal elements localized to edges of growth cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号