首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
CO dehydrogenase (EC 1.2.99.2) catalyzes the oxidation of CO according to the following equation: CO + H2O-->CO2 + 2 e- + 2 H+. It is a selenium-containing molybdo-iron-sulfur-flavoenzyme, which has been crystallized and structurally characterized in its oxidized state from the aerobic CO utilizing bacteria Oligotropha carboxidovorans and Hydrogenophaga pseudoflava. Both CO dehydrogenase structures show only minor differences, and the enzymes are dimers of two heterotrimers. Each heterotrimer is composed of a molybdoprotein, a flavoprotein, and an iron-sulfur protein. CO oxidation takes place at the molybdoprotein which contains a 1:1 mononuclear complex of molybdopterin-cytosine dinucleotide and a Mo-ion, along with a catalytically essential S-selanylcysteine. The latter is appropriately positioned in the SeMo-active site by a unique VAYRCSFR active site loop. In H. pseudoflava the arginine preceeding the cysteine in the active site loop is modified to a Cgamma-hydroxy arginine residue which has no obvious function. The substituents in the first coordination sphere of the Mo-ion are the enedithiolate sulfur atoms of the molybdopterin-cytosine dinucleotide, two oxo- and a sulfido-group. Extended X-ray absorption fine structure spectroscopy (EXAFS), along with the crystal structure of CO dehydrogenase (23.2 U mg(-1)) at 1.85 A resolution, have identified a sulfur atom at 2.3 A from the Mo-ion. The sulfur reacts with cyanide yielding thiocyanate. The corresponding inactive desulfo-CO dehydrogenase shows a typical desulfo inhibited-type of Mo-electron paramagnetic resonance (EPR) spectrum. Structural changes at the SeMo-site during catalysis are suggested by the Mo to Se distance of 3.7 A and the Mo-S-Se angle of 113 degrees in the oxidized enzyme which increase to 4.1 A, and 121 degrees, respectively, in the reduced enzyme. The intramolecular electron transport chain in CO dehydrogenase involves the following prosthetic groups and minimal distances: CO-->[Mo of the molybdenum cofactor] - 14.6 A - [2Fe-2S]I - 12.4 A - [2Fe-2S]II - 8.7 A - [FAD].  相似文献   

2.
Bradyrhizobium japonicum strain 110spc4 was capable of chemolithoautotrophic growth with carbon monoxide (CO) as a sole energy and carbon source under aerobic conditions. The enzyme carbon monoxide dehydrogenase (CODH; EC 1.2.99.2) has been purified 21-fold, with a yield of 16% and a specific activity of 58 nmol of CO oxidized/min/mg of protein, by a procedure that involved differential ultracentrifugation, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis and had a molecular mass of 230,000 Da. The 230-kDa enzyme was composed of large (L; 75-kDa), medium (M; 28.4-kDa), and small (S; 17.2-kDa) subunits occurring in heterohexameric (LMS)(2) subunit composition. The 75-kDa polypeptide exhibited immunological cross-reactivity with the large subunit of the CODH of Oligotropha carboxidovorans. The B. japonicum enzyme contained, per mole, 2.29 atoms of Mo, 7.96 atoms of Fe, 7.60 atoms of labile S, and 1.99 mol of flavin. Treatment of the enzyme with iodoacetamide yielded di(carboxamidomethyl)molybdopterin cytosine dinucleotide, identifying molybdopterin cytosine dinucleotide as the organic portion of the B. japonicum CODH molybdenum cofactor. The absorption spectrum of the purified enzyme was characteristic of a molybdenum-containing iron-sulfur flavoprotein.  相似文献   

3.
4.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   

5.
The native flavin, FAD, was removed from chicken liver xanthine dehydrogenase and milk xanthine oxidase by incubation with CaCl2. The deflavoenzymes, still retaining their molybdopterin and iron-sulfur prosthetic groups, were reconstituted with a series of FAD derivatives containing chemically reactive or environmentally sensitive substituents in the isoalloxazine ring system. The reconstituted enzymes containing these artificial flavins were all catalytically active. With both the chicken liver dehydrogenase and the milk oxidase, the flavin 8-position was found to be freely accessible to solvent. The flavin 6-position was also freely accessible to solvent in milk xanthine oxidase, but was significantly less exposed to solvent in the chicken liver dehydrogenase. Pronounced differences in protein structure surrounding the bound flavin were indicated by the spectral properties of the two enzymes reconstituted with flavins containing ionizable -OH or -SH substituents at the flavin 6- or 8-positions. Milk xanthine oxidase either displayed no preference for binding of the neutral or anionic flavin (8-OH-FAD) or a slight preference for the anionic form of the flavin (6-hydroxy-FAD, 6-mercapto-FAD, and possibly 8-mercapto-FAD). On the other hand, the chicken liver dehydrogenase had a dramatic preference for binding the neutral (protonated) forms of all four flavins, perturbing the pK of the ionizable substituent greater than or equal to 4 pH units. These results imply the existence of a strong negative charge in the flavin binding site of the dehydrogenase, which is absent in the oxidase.  相似文献   

6.
7.
8.
The gene fprA of Mycobacterium tuberculosis, encoding a putative protein with 40% identity to mammalian adrenodoxin reductase, was expressed in Escherichia coli and the protein purified to homogeneity. The 50-kDa protein monomer contained one tightly bound FAD, whose fluorescence was fully quenched. FprA showed a low ferric reductase activity, whereas it was very active as a NAD(P)H diaphorase with dyes. Kinetic parameters were determined and the specificity constant (kcat/Km) for NADPH was two orders of magnitude larger than that of NADH. Enzyme full reduction, under anaerobiosis, could be achieved with a stoichiometric amount of either dithionite or NADH, but not with even large excess of NADPH. In enzyme titration with substoichiometric amounts of NADPH, only charge transfer species (FAD-NADPH and FADH2-NADP+) were formed. At NADPH/FAD ratios higher than one, the neutral FAD semiquinone accumulated, implying that the semiquinone was stabilized by NADPH binding. Stabilization of the one-electron reduced form of the enzyme may be instrumental for the physiological role of this mycobacterial flavoprotein. By several approaches, FprA was shown to be able to interact productively with [2Fe-2S] iron-sulfur proteins, either adrenodoxin or plant ferredoxin. More interestingly, kinetic parameters of the cytochrome c reductase reaction catalyzed by FprA in the presence of a 7Fe ferredoxin purified from M. smegmatis were determined. A Km value of 30 nm and a specificity constant of 110 microM(-1) x s(-1) (10 times greater than that for the 2Fe ferredoxin) were determined for this ferredoxin. The systematic name for FprA is therefore NADPH-ferredoxin oxidoreductase.  相似文献   

9.
Moorella thermoacetica ferments glucose to three acetic acids. In the oxidative part of the fermentation, the hexose is converted to 2 acetic acids and 2 CO(2) molecules with the formation of 2 NADH and 2 reduced ferredoxin (Fd(red)(2-)) molecules. In the reductive part, 2 CO(2) molecules are reduced to acetic acid, consuming the 8 reducing equivalents generated in the oxidative part. An open question is how the two parts are electronically connected, since two of the four oxidoreductases involved in acetogenesis from CO(2) are NADP specific rather than NAD specific. We report here that the 2 NADPH molecules required for CO(2) reduction to acetic acid are generated by the reduction of 2 NADP(+) molecules with 1 NADH and 1 Fd(red)(2-) catalyzed by the electron-bifurcating NADH-dependent reduced ferredoxin:NADP(+) oxidoreductase (NfnAB). The cytoplasmic iron-sulfur flavoprotein was heterologously produced in Escherichia coli, purified, and characterized. The purified enzyme was composed of 30-kDa (NfnA) and 50-kDa (NfnB) subunits in a 1-to-1 stoichiometry. NfnA harbors a [2Fe2S] cluster and flavin adenine dinucleotide (FAD), and NfnB harbors two [4Fe4S] clusters and FAD. M. thermoacetica contains a second electron-bifurcating enzyme. Cell extracts catalyzed the coupled reduction of NAD(+) and Fd with 2 H(2) molecules. The specific activity of this cytoplasmic enzyme was 3-fold higher in H(2)-CO(2)-grown cells than in glucose-grown cells. The function of this electron-bifurcating hydrogenase is not yet clear, since H(2)-CO(2)-grown cells additionally contain high specific activities of an NADP(+)-dependent hydrogenase that catalyzes the reduction of NADP(+) with H(2). This activity is hardly detectable in glucose-grown cells.  相似文献   

10.
S A Ensign  D Bonam  P W Ludden 《Biochemistry》1989,28(12):4968-4973
The role of nickel in CO oxidation and electron flow was investigated in carbon monoxide dehydrogenase from Rhodospirillum rubrum. The Fe-S centers of oxidized, nickel-containing (holo) CO dehydrogenase were completely reduced within 1 min of exposure to CO. The Fe-S centers of oxidized, nickel-deficient (apo) CO dehydrogenase were not reduced during a 35-min incubation in the presence of CO. Apo-CO dehydrogenase Fe-S centers were reduced by dithionite. The Fe-S centers of cyanide-inhibited, holo-CO dehydrogenase were not reduced in the presence of CO but were reduced by dithionite. Treatment of apo-CO dehydrogenase with cobalt(II), zinc(II), and iron(II) resulted in association of these metal ions (0.70, 1.2, and 0.86 mol of M2+/mol, respectively) with the protein but no increase in specific activity. Purified holo-CO dehydrogenase contained 1.1 mol of nickel/mol of protein and could not be further activated upon addition of NiCl2, suggesting the presence of one catalytic nickel site on the enzyme. The M2+-treated enzymes could not be further activated by addition of NiCl2 as opposed to the untreated apoenzyme, whose activity was stimulated 50-100-fold to the level of holoenzyme upon addition of NiCl2. When placed under CO, the Fe-S centers of the cobalt-treated enzyme became reduced over a 35-min time course, as opposed to the zinc- and iron-treated enzymes, which remained oxidized. We conclude that nickel, or an appropriate nickel analogue in the nickel site, mediates electron flow from CO to the Fe-S centers of CO dehydrogenase.  相似文献   

11.
Cell extracts from acetate-grown Methanosarcina thermophila contained CO-oxidizing:H2-evolving activity 16-fold greater than extracts from methanol-grown cells. Following fractionation of cell extracts into soluble and membrane components, CO-dependent H2 evolution and CO-dependent methyl-coenzyme M methylreductase activities were only present in the soluble fraction, but addition of the membrane fraction enhanced both activities. A b-type cytochrome(s), present in the membrane fraction, was linked to a membrane-bound hydrogenase. CO-oxidizing:H2-evolving activity was reconstituted with: (i) CO dehydrogenase complex, (ii) a ferredoxin, and (iii) purified membranes with associated hydrogenase. The ferredoxin was a direct electron acceptor for the CO dehydrogenase complex. The ferredoxin also coupled CO oxidation by CO dehydrogenase complex to metronidazole reduction.  相似文献   

12.
W Shin  P R Stafford  P A Lindahl 《Biochemistry》1992,31(26):6003-6011
Redox titrations of carbon monoxide dehydrogenase (CODH) from Clostridium thermoaceticum were performed using the reductant CO and the oxidant thionin. Titrations were followed at 420 nm, a wavelength sensitive to redox changes of the iron-sulfur clusters in the enzyme. When CODH was oxidized by just enough thionin to maximize A420, two molecules of CO per mole of CODH dimer (4 equiv/mol) reduced the enzyme fully. Likewise, 4 equiv/mol of thionin oxidized the fully-reduced enzyme to the point where A420 maximized. The four n = 1 redox sites which titrated in this region were designated group I sites. They include at least two iron-sulfur clusters, [Fe/S]A and [Fe/S]B, and two other sites, A' and B'. The [Fe4S4]2+/1+ cluster in CODH is included in this group. [Fe/S]B and B' have reduction potentials (at pH 8) below -480 mV vs NHE; [Fe/S]A and A' have reduction potentials above that value. The reduction potential of either [Fe/S]B or B' is near to the CO/CO2 couple at pH 8 (-622 mV). When CODH was oxidized by more than enough thionin to maximize A420, some of the excess thionin oxidized the so-called group II redox sites. These sites have reduction potentials more positive than group I and do not exhibit changes at 420 nm when titrated. Titration of group II sites required 1-2 equiv/mol. EPR of reduced group II sites exhibited the gav = 1.82 signal. When these sites were oxidized, the only signal present had g values at 2.075, 2.036, and 1.983.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a bifunctional enzyme that catalyzes the reversible reduction of carbon dioxide into carbon monoxide and the coupled synthesis of acetyl-CoA from the carbon monoxide produced. Exposure of CODH/ACS from Moorella thermoacetica to carbon monoxide gives rise to several infrared bands in the 2100-1900 cm(-1) spectral region that are attributed to the formation of metal-coordinated carbon monoxide species. Infrared bands attributable to M-CO are not detected in the as-isolated enzyme, suggesting that the enzyme does not contain intrinsic metal-coordinated CO ligands. A band detected at 1996 cm(-1) in the CO-flushed enzyme is assigned as arising from CO binding to a metal center in cluster A of the ACS subunit. The frequency of this band is most consistent with it arising from a terminally coordinated Ni(I) carbonyl. Multiple infrared bands at 2078, 2044, 1970, 1959, and 1901 cm(-1) are attributed to CO binding at cluster C of the CODH subunit. All infrared bands attributed to metal carbonyls decay in a time-dependent fashion as CO(2) appears in the solution. These observations are consistent with the enzyme-catalyzed oxidation of carbon monoxide until it is completely depleted from solution during the course of the experiments.  相似文献   

14.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Rhodospirillum rubrum was shown to be an oxygen-sensitive, nickel, iron-sulfur, and zinc-containing protein that was induced by carbon monoxide (CO). The enzyme was purified 212-fold by heat treatment, ion-exchange, and hydroxylapatite chromatography and preparative gel electrophoresis. The purified protein, active as a monomer of Mr = 61,800, existed in two forms that were comprised of identical polypeptides and differed in metal content. Form 1 comprised 90% of the final activity, had a specific activity of 1,079 mumol CO oxidized per min-1 mg-1, and contained 7 iron, 6 sulfur, 0.6 nickel, and 0.4 zinc/monomer. Form 2 had a lower specific activity (694 mumol CO min-1 mg-1) and contained 9 iron, 8 sulfur, 1.4 nickel, and 0.8 zinc/monomer. Reduction of either form by CO or dithionite resulted in identical, rhombic ESR spectra with g-values of 2.042, 1.939, and 1.888. Form 2 exhibited a 2-fold higher integrated spin concentration, supporting the conclusion that it contained an additional reducible metal center(s). Cells grown in the presence of 63NiCl2 incorporated 63Ni into CO dehydrogenase. Although nickel was clearly present in the protein, it was not ESR-active under any conditions tested. R. rubrum CO dehydrogenase was antigenically distinct from the CO dehydrogenases from Methanosarcina barkeri and Clostridium thermoaceticum.  相似文献   

15.
Eight Ni proteins are known and three of these, CO dehydrogenase (CODH), acetyl-CoA synthase (ACS), and hydrogenase, are Ni-Fe-S proteins. In the last three years, the long-awaited structures of CODH and ACS have been solved. The bioinorganic community was shocked, as the structures of the active sites of CODH and ACS, the C- and A-cluster, respectively, which each had been predicted to consist of a [Fe4S4] cluster bridged to a single Ni, revealed unexpected compositions and arrangements. Crystal structures of ACS revealed major differences in protein conformation and in A-cluster composition; for example, a [Fe4S4] cluster bridged to a binuclear center in which one of the metal binding sites was occupied by Ni, Cu, or Zn. Recent studies have revealed Ni-Ni to be the active state, unveiled the source of the heterogeneity that had plagued studies of CODH/ACS for decades, and produced a metal-replacement strategy to generate highly active and nearly homogeneous enzyme.Abbreviations CFeSP corrinoid iron-sulfur protein - CH3H4folate methyltetrahydrofolate - CODH/ACS carbon monoxide dehydrogenase/acetyl-CoA synthases - ENDOR electron nuclear double resonance - MeTr methyltransferase  相似文献   

16.
In addition to the two species of ferredoxin-type iron-sulfur centers (Centers S-1 and S-2), a third iron-sulfur center (Center S-3), which is paramagnetic in the oxidezed state analogous to the bacterial high potential iron-sulfur protein, has bwen detected in the reconstitutively active soluble succinate dehydrogenase preparation. Midpoint potential (at pH 7.4) of Center S-3 determined in a particulate succinate-cytochrome c reductase is +60 +/- 15 mV. In soluble form, Center S-3 becomes extremely labile towards oxygen or ferricyanide plus phenazine methosulfate similar to reconstitutive activity of the dehydrogenase. Thus, even freshly prepared reconstitutively active enzyme preparations show EPR spectra of Center S-3 which correspond approximately to 0.5 eq per flavin; in particulate preparations this component was found in a 1:1 ratio to flavin. All reconstitutively inactive dehydrogenase preparations that Center S-3 is an innate constituent of succinate dehydrogenase and plays an important role in mediating electrons from the flavoprotein subunit to most probably ubiquinone and then to the cytochrome chain.  相似文献   

17.
K S Kim  Y T Ro    Y M Kim 《Journal of bacteriology》1989,171(2):958-964
A brown carbon monoxide dehydrogenase from CO-autotrophically grown cells of Acinetobacter sp. strain JC1, which is unstable outside the cells, was purified 80-fold in seven steps to better than 95% homogeneity, with a yield of 44% in the presence of the stabilizing agents iodoacetamide (1 mM) and ammonium sulfate (100 mM). The final specific activity was 474 mumol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, NAD(P), flavin mononucleotide, flavin adenine dinucleotide, and ferricyanide were not reduced by the enzyme, but methylene blue, thionin, and dichlorophenolindophenol were reduced. The molecular weight of the native enzyme was determined to be 380,000. Sodium dodecyl sulfate-gel electrophoresis revealed at least three nonidentical subunits of molecular weights 16,000 (alpha), 34,000 (beta), and 85,000 (gamma). The purified enzyme contained particulate hydrogenase-like activity. Selenium did not stimulate carbon monoxide dehydrogenase activity. The isoelectic point of the native enzyme was found to be 5.8; the Km of CO was 150 microM. The enzyme was rapidly inactivated by methanol. One mole of native enzyme was found to contain 2 mol of each of flavin adenine dinucleotide and molybdenum and 8 mol each of nonheme iron and labile sulfide, which indicated that the enzyme was a molybdenum-containing iron-sulfur flavoprotein. The ratio of densities of each subunit after electrophoresis (alpha:beta:gamma = 1:2:6) and the number of each cofactor in the native enzyme suggest a alpha 2 beta 2 gamma 2 structure of the enzyme. The carbon monoxide dehydrogenase of Acinetobacter sp. strain JC1 was found to have no immunological relationship with enzymes of Pseudomonas carboxydohydrogena and Pseudomonas carboxydovorans.  相似文献   

18.
Fast protein liquid chromatography of cell extract from methanol- or acetate-grown Methanosarcina thermophila resolved two peaks of CO dehydrogenase activity. The activity of one of the CO dehydrogenases was sixfold greater in acetate-grown compared with methanol-grown cells. This CO dehydrogenase was purified to apparent homogeneity (70 mumol of methyl viologen reduced per min per mg of protein) and made up greater than 10% of the cellular protein of acetate-grown cells. The native enzyme (Mr 250,000) formed aggregates with an Mr of approximately 1,000,000. The enzyme contained five subunits (Mrs 89,000, 71,000, 60,000, 58,000, and 19,000), suggesting a multifunctional enzyme complex. Nickel, iron, cobalt, zinc, inorganic sulfide, and a corrinoid were present in the complex. The UV-visible spectrum suggested the presence of iron-sulfur centers. The electron paramagnetic resonance spectrum contained g values of 2.073, 2.049, and 2.028; these features were broadened in enzyme that was purified from cells grown in the presence of medium enriched with 61Ni, indicating the involvement of this metal in the spectrum. The pattern of potassium cyanide inhibition indicated that cyanide binds at or near the CO binding site. The properties of the enzyme imply an involvement in the dissimilation of acetate to methane, possibly by cleavage of acetate or activated acetate.  相似文献   

19.
The amino acid sequence of the flavoprotein subunit of Chromatium vinosum flavocytochrome c-sulfide dehydrogenase (FCSD) was determined by automated Edman degradation and mass spectrometry in conjunction with the three-dimensional structure determination (Chen Z et al., 1994, Science 266:430-432). The sequence of the diheme cytochrome c subunit was determined previously. The flavoprotein contains 401 residues and has a calculated protein mass, including FAD, of 43,568 Da, compared with a mass of 43,652 +/- 44 Da measured by LDMS. There are six cysteine residues, among which Cys 42 provides the site of covalent attachment of the FAD. Cys 161 and Cys 337 form a disulfide bond adjacent to the FAD. The flavoprotein subunit of FCSD is most closely related to glutathione reductase (GR) in three-dimensional structure and, like that protein, contains three domains. However, approximately 20 insertions and deletions are necessary for alignment and the overall identity in sequence is not significantly greater than for random comparisons. The first domain binds FAD in both proteins. Domain 2 of GR is the site of NADP binding, but has an unknown role in FCSD. We postulate that it is the binding site for a cofactor involved in oxidation of reduced sulfur compounds. Domains 1 and 2 of FCSD, as of GR, are homologous to one another and represent an ancient gene doubling. The third domain provides the dimerization interface for GR, but is the site of binding of the cytochrome subunit in FCSD. The four functional entities, predicted to be near the FAD from earlier studies of the kinetics of sulfite adduct formation and decay, have now been identified from the three-dimensional structure and the sequence as Cys 161/Cys 337 disulfide, Trp 391, Glu 167, and the positive end of a helix dipole.  相似文献   

20.
Dihydropyrimidine dehydrogenase was isolated from cytosolic pig liver extracts and purified 3100-fold to apparent homogeneity. Purification made use of ammonium sulfate fractionation, precipitation with acetic acid and chromatography on DEAE-cellulose and 2',5'-ADP-Sepharose with 28% recovery of total activity. The native enzyme has a molecular mass of 206 kDa and is apparently composed of two similar, if not identical, subunits. Proteolytic cleavage reveals two fragments with apparent molecular masses of 92 kDa and 12 kDa. The C-terminal 12-kDa fragment seems to be extremely hydrophobic. The enzyme contains tightly associated compounds including four flavin nucleotide molecules and 32 iron atoms/206-kDa molecule. The iron atoms are probably present in iron-sulfur centers. The flavins released from the enzyme were identified as FAD and FMN in equal amounts. An isoelectric point of 4.65 was determined for the dehydrogenase. Apparent kinetic parameters were obtained for the substrates thymine, uracil, 5-aminouracil, 5-fluorouracil and NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号