首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seibert AL  Liu J  Hanck DA  Blumenthal KM 《Biochemistry》2003,42(49):14515-14521
Anthopleurin B (ApB) is a high-affinity sea anemone neurotoxin that interacts with voltage-sensitive sodium (Na(V)) channels, causing a delay in channel inactivation. The solution structures of all known anemone toxins having this activity include a poorly defined region encompassing ApB residues 8-17, which we call the Arg-14 loop. We propose that the inherent mobility of the Arg-14 loop is necessary for the toxins' ability to maintain a high-affinity channel complex throughout the continual conformational transitions experienced by the channel during its functional cycle. We have previously shown that Arg-12, located in this loop, and Leu-18, which is adjacent, are important for ApB activity. Here, we characterized the role of two glycines located within the loop (Gly-10 and Gly-15) and an additional glycine positioned immediately C-terminal to it (Gly-20). We used site-directed replacement by alanine to assess the functional contribution to toxin binding of each of these residues singly and in combination. Gly-20 was found to be an essential toxin folding determinant; Gly-10 and Gly-15 were important for determining toxin affinity. Compared to wild-type toxin, the G10A and G15A toxins displayed significantly higher K(D) values for both cardiac (Na(V)1.5) and neuronal (Na(V)1.2) channels, although both demonstrated greater isoform discrimination for Na(V)1.5 than did wild-type ApB. For both G10A and G15A, significant Na(V) isoform differences were evident for on- and off-rates, with the most dramatic effect of a single mutation being the 467-fold reduction in the on-rate for G10A binding to Na(V)1.2, suggestive of a more accommodating binding site on Na(V)1.5 as compared to Na(V)1.2. Because alanine replacement of glycines is known to be associated with reduced backbone freedom, these results suggest an essential role for Arg-14 loop flexibility in toxin function, although a direct steric effect of the mutant methyl group cannot be excluded.  相似文献   

2.
Arg-52 of the Escherichia coli melibiose carrier was replaced by Ser (R52S), Gln (R52Q), or Val (R52V). While the level of carrier in the membrane for each mutant remained similar to that for the wild type, analysis of melibiose transport showed an uncoupling of proton cotransport and a drastic reduction in Na(+)-coupled transport. Second-site revertants were selected on MacConkey plates containing melibiose, and substitutions were found at nine distinct locations in the carrier. Eight revertant substitutions were isolated from the R52S strain: Asp-19-->Gly, Asp-55-->Asn, Pro-60-->Gln, Trp-116-->Arg, Asn-244-->Ser, Ser-247-->Arg, Asn-248-->Lys, and Ile-352-->Val. Two revertants were also isolated from the R52V strain: Trp-116-->Arg and Thr-338-->Arg revertants. The R52Q strain yielded an Asp-55-->Asn substitution and a first-site revertant, Lys-52 (R52K). The R52K strain had transport properties similar to those of the wild type. Analysis of melibiose accumulation showed that proton-driven accumulation was still defective in the second-site revertant strains, and only the Trp-116-->Arg, Ser-247-->Arg, and Asn-248-->Lys revertants regained significant Na(+)-coupled accumulation. In general, downhill melibiose transport in the presence of Na(+) was better in the revertant strains than in the parental mutants. Three revertant strains, Asp-19-->Gly, Asp-55-->Asn, and Thr-338-->Arg strains, required a high Na(+) concentration (100 mM) for maximal activity. Kinetic measurements showed that the N248K and W116R revertants lowered the K(m) for melibiose, while other revertants restored transport velocity. We suggest that the insertion of positive charges on membrane helices is compensating for the loss of Arg-52 and that helix II is close to helix IV and VII. We also suggest that Arg-52 is salt bridged to Asp-55 (helix II) and Asp-19 (helix I).  相似文献   

3.
The major soluble avian eye lens protein, delta crystallin, is highly homologous to the housekeeping enzyme argininosuccinate lyase (ASL). ASL is part of the urea and arginine-citrulline cycles and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. In duck lenses, there are two delta crystallin isoforms that are 94% identical in amino acid sequence. Only the delta2 isoform has maintained ASL activity and has been used to investigate the enzymatic mechanism of ASL. The role of the active site residues Ser-29, Asp-33, Asp-89, Asn-116, Thr-161, His-162, Arg-238, Thr-281, Ser-283, Asn-291, Asp-293, Glu-296, Lys-325, Asp-330, and Lys-331 have been investigated by site-directed mutagenesis, and the structure of the inactive duck delta2 crystallin (ddeltac2) mutant S283A with bound argininosuccinate was determined at 1.96 A resolution. The S283A mutation does not interfere with substrate binding, because the 280's loop (residues 270-290) is in the open conformation and Ala-283 is more than 7 A from the substrate. The substrate is bound in a different conformation to that observed previously indicating a large degree of conformational flexibility in the fumarate moiety when the 280's loop is in the open conformation. The structure of the S283A ddeltac2 mutant and mutagenesis results reveal that a complex network of interactions of both protein residues and water molecules are involved in substrate binding and specificity. Small changes even to residues not involved directly in anchoring the argininosuccinate have a significant effect on catalysis. The results suggest that either His-162 or Thr-161 are responsible for proton abstraction and reinforce the putative role of Ser-283 as the catalytic acid, although we cannot eliminate the possibility that arginine is released in an uncharged form, with the solvent providing the required proton. A detailed enzymatic mechanism of ASL/ddeltac2 is presented.  相似文献   

4.
The requirement of basic residues as substrate specificity determinants for the chicken gizzard myosin light chain kinase has been studied using synthetic peptide analogs of the local phosphorylation site sequence in the myosin light chains, Lys-Lys-Arg13-Pro-Gln-Arg16-Ala-Thr-Ser19-Asn-Val-Phe- Ala. The basic residue, Arg-16, was found to have a strong influence on the kinetics of phosphorylation similar to that reported previously for the three adjacent residues, Lys-11, Lys-12, and Lys-13 (Kemp, B. E., Pearson, R. B., and House, C. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7471-7475). The location of Arg-16 in relation to Ser-19 as well as the distance between Arg-13 and Arg-16 had a profound effect on both the kinetics and the site specificity of phosphorylation. Placement of Arg-16 at position 15 resulted in a complete switch in phosphorylation site specificity from Ser-19 to Thr-18. Increasing the number of alanine residues between Arg-13 and Arg-16 in the model peptide, Lys-Lys-Arg-(Ala)n-Arg-Ala-Thr-Ser-Asn-Val-Phe-Ala, also influenced the kinetics and site specificity of peptide phosphorylation. With two or three alanines (n = 2 or 3), the apparent Km was 7.5 and 10 microM, respectively, and 97% of the phosphate was esterified to Ser-19. Increasing or decreasing the number of alanines (n = O to n = 4) was accompanied by an increase in the apparent Km and phosphorylation of both Thr-18 and Ser-19. These results support the concept that both the presence and location of basic residues play an essential role in the substrate specificity of the smooth muscle myosin light chain kinase.  相似文献   

5.
Sheep liver 6-phosphogluconate dehydrogenase shows a high specificity for NADP, with a much lower affinity for NAD. Discrimination between NADP and NAD suggests that the interactions between the 2'-phosphate and 6-phosphogluconate dehydrogenase contribute most of the binding energy for NADP. There are three active site residues, Asn-32, Arg-33, and Thr-34, that hydrogen-bond to the 2'-phosphate of NADP according to the crystal structure of the E.Nbr(8)ADP complex. In this study alanine mutagenesis was used to probe the contribution of each of the three residues to binding the cofactor and to catalysis. All mutant enzymes exhibit no significant change in V/E(t) or K(6PG) but an increase in K(NADP) that ranges from 6- to 80-fold. All mutant enzymes also exhibit at least a 7-fold increase in the primary kinetic (13)C-isotope effect-1, indicating that the decarboxylation step has become more rate-limiting. Data are consistent with significant roles for Asn-32, Arg-33, and Thr-34 in providing binding energy for NADP, and more importantly, the 2'-phosphate of NADP is required for proper orientation of the cofactor to allow rotation about the N-glycosidic bond as it is reduced in the hydride transfer step.  相似文献   

6.
Localization of thrombomodulin-binding site within human thrombin   总被引:3,自引:0,他引:3  
A binding site for thrombomodulin on human thrombin (alpha-thrombin) was elucidated by identifying an epitope for a monoclonal antibody for thrombin (MT-6) which inhibited the activation of protein C by the thrombin-thrombomodulin complex by directly inhibiting the binding of thrombin to thrombomodulin. An 8.5-kDa fragment isolated by digestion of thrombin with Staphylococcus aureus V8 protease followed by reversed-phase high performance liquid chromatography (HPLC) and a peptide isolated by reversed-phase HPLC after reduction of the 8.5-kDa fragment, which was composed of three peptides linked by disulfide-bonds, bound directly to MT-6 and thrombomodulin. The amino acid sequence of the peptide coincided with the sequence of residues Thr-147 to Asp-175 of the B-chain of thrombin. A synthetic peptide corresponding to Thr-147 to Ser-158 of the B-chain inhibited the binding of thrombin to thrombomodulin. Elastase-digested thrombin, which was cleaved between Ala-150 and Asn-151, lost its binding affinity for both MT-6 and thrombomodulin. These findings indicate that the binding site for thrombomodulin is located within the sequence between Thr-147 and Ser-158 of the B-chain.  相似文献   

7.
Li C  Li JJ  Montgomery MG  Wood SP  Bugg TD 《Biochemistry》2006,45(41):12470-12479
The alpha/beta-hydrolase superfamily, comprised mainly of esterase and lipase enzymes, contains a family of bacterial C-C hydrolases, including MhpC and BphD which catalyze the hydrolytic C-C cleavage of meta-ring fission intermediates on the Escherichia coli phenylpropionic acid pathway and Burkholderia xenovorans LB400 biphenyl degradation pathway, respectively. Five active site amino acid residues (Arg-188, Asn-109, Phe-173, Cys-261, and Trp-264) were identified from sequence alignments that are conserved in C-C hydrolases, but not in enzymes of different function. Replacement of Arg-188 in MhpC with Gln and Lys led to 200- and 40-fold decreases, respectively, in k(cat); the same replacements for Arg-190 of BphD led to 400- and 700-fold decreases, respectively, in k(cat). Pre-steady-state kinetic analysis of the R188Q MhpC mutant revealed that the first step of the reaction, keto-enol tautomerization, had become rate-limiting, indicating that Arg-188 has a catalytic role in ketonization of the dienol substrate, which we propose is via substrate destabilization. Mutation of nearby residues Phe-173 and Trp-264 to Gly gave 4-10-fold reductions in k(cat) but 10-20-fold increases in K(m), indicating that these residues are primarily involved in substrate binding. The X-ray structure of a succinate-H263A MhpC complex shows concerted movements in the positions of both Phe-173 and Trp-264 that line the approach to Arg-188. Mutation of Asn-109 to Ala and His yielded 200- and 350-fold reductions, respectively, in k(cat) and pre-steady-state kinetic behavior similar to that of a previous S110A mutant, indicating a role for Asn-109 is positioning the active site loop containing Ser-110. The catalytic role of Arg-188 is rationalized by a hydrogen bond network close to the C-1 carboxylate of the substrate, which positions the substrate and promotes substrate ketonization, probably via destabilization of the bound substrate.  相似文献   

8.
D T Simmons  K Wun-Kim    W Young 《Journal of virology》1990,64(10):4858-4865
We have previously identified three regions (called elements) in the DNA-binding domain of simian virus 40 large tumor (T) antigen which are critical for binding of the protein to the recognition pentanucleotides GAGGC at the viral replication origin. These are elements A (residues 147 to 159), B1 (185 to 187), and B2 (203 to 207). In this study, we generated mutants of simian virus 40 in order to make single-point substitution mutations at nearly every site in these three elements. Each mutation was tested for its effect on virus replication, and T antigen was produced from all replication-negative mutants. The mutant proteins were assayed for binding to several different DNA substrates and for helicase activity. We found that within each element, mutations at some sites had major effects on DNA binding while mutations at other sites had moderate, mild, or minimal effects, suggesting that some residues are more important than others in mediating DNA binding. Furthermore, we provide evidence that certain residues in elements A and B2 (Ala-149, Phe-159, and His-203) participate in nonspecific double-stranded and helicase substrate (single-stranded) DNA binding while others (Ser-147, Ser-152, Asn-153, Thr-155, Arg-204, Val-205, and Ala-207) are involved in sequence-specific binding at the origin. The residues in element B1 (primarily Ser-185 and His-187) take part only in nonspecific DNA binding. The amino acids important for nonspecific DNA binding are also required for helicase activity, and we hypothesize that they make contact with the sugar-phosphate backbone of DNA. On the other hand, those involved in sequence-specific binding are not needed for helicase activity. Finally, our analysis showed that three residues (Asn-153 and Thr-155 in element A and Arg-204 in element B2) may be the most important for sequence-specific binding. They are likely to make direct or indirect contacts with the pentanucleotide sequences at the origin.  相似文献   

9.
The first μ-conotoxin studied, μCTX GIIIA, preferentially blocked voltage-gated skeletal muscle sodium channels, Na(v)1.4, while μCTX PIIIA was the first to show significant blocking action against neuronal voltage-gated sodium channels. PIIIA shares >60% sequence identity with the well-studied GIIIA, and both toxins preferentially block the skeletal muscle sodium channel isoform. Two important features of blocking by wild-type GIIIA are the toxin's high binding affinity and the completeness of block of a single channel by a bound toxin molecule. With GIIIA, neutral replacement of the critical residue, Arg-13, allows a residual single-channel current (~30% of the unblocked, unitary amplitude) when the mutant toxin is bound to the channel and reduces the binding affinity of the toxin for Na(v)1.4 (~100-fold) [Becker, S., et al. (1992) Biochemistry 31, 8229-8238]. The homologous residue in PIIIA, Arg-14, is also essential for completeness of block but less important in the toxin's binding affinity (~55% residual current and ~11-fold decrease in affinity when substituted with alanine or glutamine). The weakened dominance of this key arginine in PIIIA is also seen in the fact that there is not just one (R13 in GIIIA) but three basic residues (R12, R14, and K17) for which individual neutral replacement enables a substantial residual current through the bound channel. We suggest that, despite a high degree of sequence conservation between GIIIA and PIIIA, the weaker dependence of PIIIA's action on its key arginine and the presence of a nonconserved histidine near the C-terminus may contribute to the greater promiscuity of its interactions with different sodium channel isoforms.  相似文献   

10.
The present work uses alpha-conotoxin ImI (CTx ImI) to probe the neurotransmitter binding site of neuronal alpha7 acetylcholine receptors. We identify key residues in alpha7 that contribute to CTx ImI affinity, and use mutant cycles analysis to identify pairs of residues that stabilize the receptor-conotoxin complex. We first mutated key residues in the seven known loops of alpha7 that converge at the subunit interface to form the ligand binding site. The mutant subunits were expressed in 293 HEK cells, and CTx ImI binding was measured by competition against the initial rate of 125I-alpha-bungarotoxin binding. The results reveal a predominant contribution by Tyr-195 in alpha7, accompanied by smaller contributions by Thr-77, Tyr-93, Asn-111, Gln-117, and Trp-149. Based upon our previous identification of bioactive residues in CTx ImI, we measured binding of receptor and toxin mutations and analyzed the results using thermodynamic mutant cycles. The results reveal a single dominant interaction between Arg-7 of CTx ImI and Tyr-195 of alpha7 that anchors the toxin to the binding site. We also find multiple weak interactions between Asp-5 of CTx ImI and Trp-149, Tyr-151, and Gly-153 of alpha7, and between Trp-10 of CTx ImI and Thr-77 and Asn-111 of alpha7. The overall results establish the orientation of CTx ImI as it bridges the subunit interface and demonstrate close approach of residues on opposing faces of the alpha7 binding site.  相似文献   

11.
On the basis of sequence and three-dimensional structure comparison between Anabaena PCC7119 ferredoxin-NADP(+) reductase (FNR) and other reductases from its structurally related family that bind either NADP(+)/H or NAD(+)/H, a set of amino acid residues that might determine the FNR coenzyme specificity can be assigned. These residues include Thr-155, Ser-223, Arg-224, Arg-233 and Tyr-235. Systematic replacement of these amino acids was done to identify which of them are the main determinants of coenzyme specificity. Our data indicate that all of the residues interacting with the 2'-phosphate of NADP(+)/H in Anabaena FNR are not involved to the same extent in determining coenzyme specificity and affinity. Thus, it is found that Ser-223 and Tyr-235 are important for determining NADP(+)/H specificity and orientation with respect to the protein, whereas Arg-224 and Arg-233 provide only secondary interactions in Anabaena FNR. The analysis of the T155G FNR form also indicates that the determinants of coenzyme specificity are not only situated in the 2'-phosphate NADP(+)/H interacting region but that other regions of the protein must be involved. These regions, although not interacting directly with the coenzyme, must produce specific structural arrangements of the backbone chain that determine coenzyme specificity. The loop formed by residues 261-268 in Anabaena FNR must be one of these regions.  相似文献   

12.
Leukotriene B(4) (LTB(4)) mediates a variety of inflammatory diseases such as asthma, arthritis, atherosclerosis, and cancer through activation of the G-protein-coupled receptor, BLT1. Using in silico molecular dynamics simulations combined with site-directed mutagenesis we characterized the ligand binding site and activation mechanism for BLT1. Mutation of residues predicted as potential ligand contact points in transmembrane domains (TMs) III (H94A and Y102A), V (E185A), and VI (N241A) resulted in reduced binding affinity. Analysis of arginines in extracellular loop 2 revealed that mutating arginine 156 but not arginine 171 or 178 to alanine resulted in complete loss of LTB(4) binding to BLT1. Structural models for the ligand-free and ligand-bound states of BLT1 revealed an activation core formed around Asp-64, displaying multiple dynamic interactions with Asn-36, Ser-100, and Asn-281 and a triad of serines, Ser-276, Ser-277, and Ser-278. Mutagenesis of many of these residues in BLT1 resulted in loss of signaling capacity while retaining normal LTB(4) binding function. Thus, polar residues within TMs III, V, and VI and extracellular loop 2 are critical for ligand binding, whereas polar residues in TMs II, III, and VII play a central role in transducing the ligand-induced conformational change to activation. The delineation of a validated binding site and activation mechanism should facilitate structure-based design of inhibitors targeting BLT1.  相似文献   

13.
The Na+/I- symporter (NIS) is a key plasma membrane glycoprotein that mediates Na+-dependent active I- transport in the thyroid, lactating breast, and other tissues. The OH group of the side chain at position 354 in transmembrane segment (TMS) IX of NIS has been demonstrated to be essential for NIS function, as revealed by the study of the congenital I- transport defect-causing T354P NIS mutation. TMS IX has the most beta-OH group-containing amino acids (Ser and Thr) of any TMS in NIS. We have thoroughly characterized the functional significance of all Ser and Thr in TMS IX in NIS, as well as of other residues in TMS IX that are highly conserved in other transporters of the SLC5A protein family. Here we show that five beta-OH group-containing residues (Thr-351, Ser-353, Thr-354, Ser-356, and Thr-357) and Asn-360, all of which putatively face the same side of the helix in TMS IX, plus Asp-369, located in the membrane/cytosol interface, play key roles in NIS function and seem to be involved in Na+ binding/translocation.  相似文献   

14.
The cardiac Na(+) channel Na(V)1.5 current (I(Na)) is critical to cardiac excitability, and altered I(Na) gating has been implicated in genetic and acquired arrhythmias. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is up-regulated in heart failure and has been shown to cause I(Na) gating changes that mimic those induced by a point mutation in humans that is associated with combined long QT and Brugada syndromes. We sought to identify the site(s) on Na(V)1.5 that mediate(s) the CaMKII-induced alterations in I(Na) gating. We analyzed both CaMKII binding and CaMKII-dependent phosphorylation of the intracellularly accessible regions of Na(V)1.5 using a series of GST fusion constructs, immobilized peptide arrays, and soluble peptides. A stable interaction between δ(C)-CaMKII and the intracellular loop between domains 1 and 2 of Na(V)1.5 was observed. This region was also phosphorylated by δ(C)-CaMKII, specifically at the Ser-516 and Thr-594 sites. Wild-type (WT) and phosphomutant hNa(V)1.5 were co-expressed with GFP-δ(C)-CaMKII in HEK293 cells, and I(Na) was recorded. As observed in myocytes, CaMKII shifted WT I(Na) availability to a more negative membrane potential and enhanced accumulation of I(Na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable Ala residues. Mutation of these sites to phosphomimetic Glu residues negatively shifted I(Na) availability without the need for CaMKII. CaMKII-dependent phosphorylation of Na(V)1.5 at multiple sites (including Thr-594 and Ser-516) appears to be required to evoke loss-of-function changes in gating that could contribute to acquired Brugada syndrome-like effects in heart failure.  相似文献   

15.
Aspartokinase I and homoserine dehydrogenase I (AKI-HDI) from Serratia marcescens Sr41 are encoded by the thrA gene as a single polypeptide chain. Previously, a single amino acid substitution of Ser-352 with Phe was shown to produce an AKI-HDI enzyme that is not subject to threonine-mediated feedback inhibition. To determine the role of Ser-352 in the allosteric response, the thrA gene was modified by using site-directed mutagenesis so that Ser-352 of the wild-type AKI-HDI was replaced by Ala, Arg, Asn, Gln, Glu, His, Leu, Met, Pro, Thr, Trp, Tyr, or Val. The Thr-352 and Pro-352 replacements rendered AKIs sensitive to threonine. The Tyr-352 and Asn-352 substitutions led to activation, rather than inhibition, of AKI by threonine. The other replacements conferred threonine insensitivity on AKI. The threonine sensitivity of HDI was also changed by the amino acid substitutions at Ser-352. The HDI carried by the Tyr-352 mutant AKI-HDI was activated by threonine. Single amino acid replacements at Ser-352 by Ala, Asn, Gln, His, Phe, Pro, Thr, or Tyr were introduced into truncated AKI-HDIs containing the AKI and the central regions. The AKI activity of the truncated AKI-HDI containing the first 468 amino acid residues was sensitive to threonine, and introduction of the amino acid replacements did not alter the threonine sensitivity of the AKI. Another truncated AKI-HDI containing the first 462 amino acid residues possessed threonine-resistant AKI, whereas the substitutions of Ser-352 with Ala and Pro rendered AKI sensitive to threonine. The replacement of GIn-351 with Phe activated AK1 of the truncated AKI-HDI in the presence of L-threonine. These findings suggest that Ser-352 of the central region of AKI-HDI is possibly a key residue involved with the allosteric regulation of both AKI and HDI activities.  相似文献   

16.
The Na+/dicarboxylate co-transporter, NaDC-1, from the kidney and small intestine, transports three sodium ions together with one divalent anion substrate, such as succinate2-. A previous study (Pajor, A. M. (2001) J. Biol. Chem. 276, 29961-29968), identified four amino acids, Ser-478, Ala-480, Ala-481, and Thr-482, near the extracellular end of transmembrane helix (TM) 9 that are likely to form part of the permeation pathway of the transporter. All four cysteine-substituted mutants were sensitive to inhibition by the membrane-impermeant reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate (MTSET) and protected by substrate. In the present study, we continued the cysteine scan through extracellular loop 5 and TM10, from Thr-483 to Val-528. Most cysteine substitutions were well tolerated, although cysteine mutations of some residues, particularly within the TM, produced proteins that were not expressed on the plasma membrane. Six residues in the extracellular loop (Thr-483, Thr-484, Leu-485, Leu-487, Ile-489, and Met-493) were sensitive to chemical labeling by MTSET, depending on the conformational state of the protein. Transport inhibition by MTSET could be prevented by substrate regardless of temperature, suggesting that the likely mechanism of substrate protection is steric hindrance rather than large-scale conformational changes associated with translocation. We conclude that extracellular loop 5 in NaDC-1 appears to have a functional role, and it is likely to be located in or near the substrate translocation pore in the protein. Conformational changes in the protein affect the accessibility of the residues in extracellular loop 5 and provide further evidence of large-scale changes in the structure of NaDC-1 during the transport cycle.  相似文献   

17.
The 5-HT3 receptor belongs to a family of therapeutically important neurotransmitter-gated receptors whose ligand binding sites are formed by the convergence of six peptide loops (A-F). Here we have mutated 15 amino acid residues in and around loop B of the 5-HT3 receptor (Ser-177 to Asn-191) to Ala or a residue with similar chemical properties. Changes in [3H]granisetron binding affinity (Kd) and 5-HT EC50 were determined using receptors expressed in human embryonic kidney 293 cells. Substitutions at all but one residue (Thr-181) altered or eliminated binding for one or both mutants. Receptors were nonfunctional or EC50 values were altered for all but two mutants (S182T, I190L). Homology modeling indicates that loop B contributes two residues to a hydrophobic core that faces into the β-sandwich of the subunit, and the experimental data indicate that they are important for both the structure and the function of the receptor. The models also show that close to the apex of the loop (Ser-182 to Ile-190), loop B residues form an extensive network of hydrogen bonds, both with other loop B residues and with adjacent regions of the protein. Overall, the data suggest that loop B has a major role in maintaining the structure of the region by a series of noncovalent interactions that are easily disrupted by amino acid substitutions.  相似文献   

18.
Mutation Asn-21 --> Ile in human cationic trypsinogen (Tg-1) has been associated with hereditary pancreatitis. Recent studies with rat anionic Tg (Tg-2) indicated that the analogous Thr-21 --> Ile mutation stabilizes the zymogen against autoactivation, whereas it has no effect on catalytic properties or autolytic stability of trypsin (Sahin-Tóth, M. (1999) J. Biol. Chem. 274, 29699-29704). In the present paper, human cationic Tg (Asn-21-Tg) and mutants Asn-21 --> Ile (Ile-21-Tg) and Asn-21 --> Thr (Thr-21-Tg) were expressed in Escherichia coli, and zymogen activation, zymogen degradation, and trypsin autolysis were studied. Enterokinase activated Asn-21-Tg approximately 2-fold better than Ile-21-Tg or Thr-21-Tg, and catalytic parameters of trypsins were comparable. At 37 degrees C, in 5 mm Ca(2+), all three trypsins were highly stable. In the absence of Ca(2+), Asn-21- and Ile-21-trypsins suffered autolysis in an indistinguishable manner, whereas Thr-21-trypsin exhibited significantly increased stability. In sharp contrast to observations with the rat proenzyme, at pH 8.0, 37 degrees C, autoactivation kinetics of Asn-21-Tg and Ile-21-Tg were identical; however, at pH 5. 0, Ile-21-Tg autoactivated at an enhanced rate relative to Asn-21-Tg. Remarkably, at both pH values, Thr-21-Tg showed markedly higher autoactivation rates than the two other zymogens. Finally, autocatalytic proteolysis of human zymogens was limited to cleavage at Arg-117, and no digestion at Lys-188 was detected. The observations indicate that zymogen stabilization by Ile-21 as observed in rat Tg-2 is not characteristic of human Tg-1. Instead, an increased propensity to autoactivation under acidic conditions might be relevant to the pathomechanism of the Asn-21 --> Ile mutation in hereditary pancreatitis. In the same context, faster autoactivation and increased trypsin stability caused by the Asn-21 --> Thr mutation in human Tg-1 might provide a rationale for the evolutionary divergence from Thr-21 found in other mammalian trypsinogens.  相似文献   

19.
20.
Hepatitis B virus (HBV) DNA was extracted from sera of six carriers with hepatitis B e antigen as well as antibody to hepatitis B surface antigen and sequenced within the pre-S regions and the S gene. HBV DNA clones from five of these carriers had point mutations in the S gene, resulting in conversion from Ile-126 or Thr-126 of the wild-type virus to Ser-126 or Asn-126 in three carriers and conversion from Gly-145 to Arg-145 in three of them; clones with Asn-126 or Arg-145 were found in one carrier. All 12 clones from the other carrier had an insertion of 24 bp encoding an additional eight amino acids between Thr-123 and Cys-124. In addition, all or at least some of the HBV DNA clones from these carriers had in-phase deletions in the 5' terminus of the pre-S2 region. These results indicate that HBV escape mutants with mutations in the S gene affecting the expression of group-specific determinants would survive in some carriers after they seroconvert to antibody against surface antigen. Carriers with HBV escape mutants may transmit HBV either by donation of blood units without detectable surface antigen or through community-acquired infection, which would hardly be prevented by current hepatitis B immuneglobulin or vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号