首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deoxypreussomerins from Jatropha curcas: are they also plant metabolites?   总被引:1,自引:0,他引:1  
Three deoxypreussomerins, palmarumycins CP1, JC1 and JC2, have been isolated from a collection of the stems of Jatropha curcas. The second and third compounds are antibacterial constituents which were characterized from spectral evidence. The X-ray crystallographic structure of palmarumycin JC1 was also studied. Deoxypreussomerins have been obtained here from a plant source in appreciable quantities.  相似文献   

3.
The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth.  相似文献   

4.
Chikungunya is a fast-mutating virus causing Chikungunya virus disease (ChikvD) with a significant load of disability-adjusted life years (DALY) around the world. The outbreak of this virus is significantly higher in the tropical countries. Several experiments have identified crucial viral–host protein–protein interactions (PPIs) between Chikungunya Virus (Chikv) and the human host. However, no standard database that catalogs this PPI information exists. Here we develop a Chikv-Human PPI database, ChikvInt, to facilitate understanding ChikvD disease pathogenesis and the progress of vaccine studies. ChikvInt consists of 109 interactions and is available at www.chikvint.com .  相似文献   

5.
Myofibroblasts produce and modify the extracellular matrix (ECM), secrete angiogenic and pro-inflammatory factors, and stimulate epithelial cell proliferation and invasion. Myofibroblasts are normally induced transiently during wound healing, but inappropriate induction of myofibroblasts causes organ fibrosis, which greatly enhances the risk of subsequent cancer development. As myofibroblasts are also found in the reactive tumor stroma, the processes involved in their development and activation are an area of active investigation. Emerging evidence suggests that a major source of fibrosis- and tumor-associated myofibroblasts is through transdifferentiation from non-malignant epithelial or epithelial-derived carcinoma cells through epithelial-mesenchymal transition (EMT). This review will focus on the role of EMT in fibrosis, considered in the context of recent studies showing that exposure of epithelial cells to matrix metalloproteinases (MMPs) can lead to increased levels of cellular reactive oxygen species (ROS) that stimulate transdifferentiation to myofibroblast-like cells. As deregulated MMP expression and increased cellular ROS are characteristic of both fibrosis and malignancy, these studies suggest that increased MMP expression may stimulate fibrosis, tumorigenesis, and tumor progression by inducing a specialized EMT in which epithelial cells transdifferentiate into activated myofibroblasts. This connection provides a new perspective on the development of the fibrosis and tumor microenvironments.  相似文献   

6.
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.  相似文献   

7.
8.
All restoration strategies to mitigate eutrophication depend on the success of phosphorus (P) removal from the water body. Therefore, the inputs from the watershed and from the enriched sediments, that were the sink of most P that has been discharged in the water body, should be controlled. In sediments, iron (hydr)oxides minerals are potent repositories of P and the release of P into the water column may occur upon dissolution of the iron (hydr)oxides mediated by iron reducing bacteria. Several species of these bacteria are also known as electroactive microorganisms and have been recently identified in lake sediments. This capacity of bacteria to transfer electrons to electrodes, producing electricity from the oxidation of organic matter, might play a role on P release in sediments. In the present work it is discussed the relationship between phosphorus and iron cycling as well as the application of an electrode to work as external electron acceptor in sediments, in order to prevent metal bound P dissolution under anoxic conditions.  相似文献   

9.
10.

Background and Aims

Increased plant density improves grain yield and nitrogen (N)–use efficiency in winter wheat (Triticum aestivum L.) by increasing the root length density (RLD) in the soil and aboveground N–uptake (AGN) at maturity. However, how the root distribution and N–uptake at different soil depths is affected by plant density is largely unknown.

Methods

A 2–year field study using the winter wheat cultivar Tainong 18 was conducted by injecting 15?N–labeled urea into soil at depths of 0.2, 0.6, and 1.0 m under four plant densities of 135 m?2, 270 m?2,405 m?2, and 540 m?2.

Results

We observed significant RLD and 15?N–uptake increases at each soil depth as the plant density increased from 135 to 405 m?2. 15?N–uptake increased with plant density as the soil depth increased, although the corresponding RLD value fell with depth. The 15?N–uptake at each soil depth was positively related to the RLD at the same depth. The total AGN was positively related to RLD in deep soil, especially at 0.8–1.2 m.

Conclusions

Increasing the plant density from 135 m?2 to the optimum increases AGN primarily by increasing the RLD in deep soil and therefore increasing the plant density of winter wheat can be used to efficiently recover N leached to deep soil. Moreover, the total root numbers per unit area and RLD still increased at supraoptimal density while shoot number and N uptake stagnated.  相似文献   

11.
12.
13.
Electrostatics govern the association of a large number of proteins with cellular membranes. In some cases, these proteins present specialized lipid-binding modules or membrane targeting domains while in other cases association is achieved through nonspecific interaction of unstructured clusters of basic residues with negatively charged lipids. Given its spatial resolution in the nanometer range, Förster resonance energy transfer (FRET) is a powerful tool to give insight into protein–lipid interactions and provide molecular level information which is difficult to retrieve with other spectroscopic techniques.In this review we present and discuss the basic formalisms of both hetero- and homo-FRET pertinent to the most commonly encountered problems in lipid–protein interaction studies and highlight some examples of implementations of different FRET methodologies to characterize lipid/protein systems in which electrostatic interactions play a crucial role. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

14.
Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant–plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.  相似文献   

15.
Invasive plant species impact both ecosystems and economies worldwide, often by displacing native biota. Many plant species exude/emit compounds into the surrounding environment with minor consequences in their native habitat due to a long coevolutionary history. However, upon introduction to ecosystems naïve to these compounds, unpredictable interactions can manifest. The majority of the putative allelochemicals studied have been root exudates, despite the large number of plant species that emit volatile organic compounds. We quantified the concentrations and ecological consequences of volatile monoterpenes from the North American invasive perennial Artemisia vulgaris. Ambient monoterpene-mixing ratios inside an A. vulgaris canopy were 0.02–4.15 ppbv in May and 0.01–0.05 ppbv in August, but were negligible (below instrument detection limit of 0.01 ppbv) 10 m away. Foliar disturbance increased total monoterpene concentration to a maximum of 27 ppbv. However, this level remains 1,000-fold lower than that shown to be phytotoxic to sensitive species in laboratory assays. In contrast, soil monoterpene concentrations were >74-fold higher inside [≤35 ± 11 ng g?1 (SDW)] and 19-fold higher at the edge [9 ± 3 ng g?1 (SDW)], compared to outside the A. vulgaris stand [0.48 ± 0.05 ng g?1 (SDW)]. A common native competitor species, Solidago canadensis, grown in pots and resident soil in situ yielded up to 50% less aboveground biomass inside as compared to outside the A. vulgaris stand. Activated carbon had no effect on greenhouse-grown S. canadensis performance when grown with A. vulgaris, suggesting root-derived exudates are not responsible for field observations. Results from this study suggest that A. vulgaris-derived monoterpenes have little direct activity in their volatile gaseous state, but are concentrated in the soil matrix within and bordering the A. vulgaris stand, thereby reducing interspecific performance and potentially fostering the subsequent local invasion of this species.  相似文献   

16.
17.
The recent decline in pollinator biodiversity, notably in the case of wild bee populations, puts both wild and agricultural ecosystems at risk of ecological community collapse. This has triggered calls for further study of these mutualistic communities in order to more effectively inform restoration of disturbed plant–pollinator communities. Here, we use a dynamic network model to test a variety of translocation strategies for restoring a community after it experiences the loss of some of its species. We consider the reintroduction of extirpated species, both immediately after the original loss and after the community has reequilibrated, as well as the introduction of other native species that were originally absent from the community. We find that reintroducing multiple highly interacting generalist species best restores species richness for lightly disturbed communities. However, for communities that experience significant losses in biodiversity, introducing generalist species that are not originally present in the community may most effectively restore species richness, although in these cases the resultant community often shares few species with the original community. We also demonstrate that the translocation of a single species has a minimal impact on both species richness and the frequency of community collapse. These results have important implications for restoration practices in the face of varying degrees of community perturbations, the refinement of which is crucial for community management.  相似文献   

18.
19.
Many plant lectins have high anti‐insect potential. Although the effects of most lectins are only moderately influencing development or population growth of the insect, some lectins have strong insecticidal properties. In addition, some studies report a deterrent activity towards feeding and oviposition behavior. Transmission of plant lectins to the next trophic level has been investigated for several tritrophic interactions. Effects of lectins with different sugar specificities can vary substantially with the insect species under investigation and with the experimental setup. Lectin binding in the insect is an essential step in exerting a toxic effect. Attempts have been made to study the interactions of lectins in several insect tissues and to identify lectin‐binding receptors. Ingested lectins generally bind to parts of the insect gut. Furthermore, some lectins such as the Galanthus nivalus agglutinin (GNA) cross the gut epithelium into the hemolymph and other tissues. Recently, several candidate lectin‐binding receptors have been isolated from midgut extracts. To date little is known about the exact mechanism for insecticidal activity of plant lectins. However, insect glycobiology is an emerging research field and the recent technological advances in the analysis of lectin carbohydrate specificities and insect glycobiology will certainly lead to new insights in the interactions between plant lectins and insects, and to a better understanding of the molecular mechanisms involved. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Cytoplasmic dynein is responsible for transport of several viruses to the nucleus. Adenovirus recruits dynein directly. Transport depends on virus-induced activation of protein kinase A (PKA) and other cellular protein kinases, whose roles in infection are poorly understood. We find that PKA phosphorylates cytoplasmic dynein at a novel site in light intermediate chain 1 (LIC1) that is essential for dynein binding to the hexon capsid subunit and for virus motility. Surprisingly, the same LIC1 modification induces a slow, but specific, dispersal of lysosomes (lyso)/late endosomes (LEs) that is mediated by inhibition of a newly identified LIC1 interaction with the RILP (Rab7-interacting lysosomal protein). These results identify an organelle-specific dynein regulatory modification that adenovirus uses for its own transport. PKA-mediated LIC1 phosphorylation causes only partial lyso/LE dispersal, suggesting a role for additional, parallel mechanisms for dynein recruitment to lyso/LEs. This arrangement provides a novel means to fine tune transport of these organelles in response to infection as well as to developmental and physiological cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号