首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the mechanism by which C4b-binding protein inhibits the cofactor activity of protein S for anticoagulant-activated protein C, the interactions between protein S, activated protein C, and C4b-binding protein were studied using solid-phase enzyme immunoassays. Both activated protein C and C4b-binding protein bound to protein S fixed to microplate wells. C4b-binding protein did not inhibit the binding of activated protein C to protein S, nor did activated protein C inhibit the binding of C4b-binding protein to protein S. Activated protein C bound to a protein S-C4b-binding protein complex which was cross-linked with a chemical reagent as well as it bound to free protein S. Protein S-C4b-binding protein complex competitively inhibited activated protein C-binding to free protein S and also the cofactor activity of free protein S. Immunoblotting analysis showed ternary complex formation with protein S, C4b-binding protein, and activated protein C in the liquid phase by treatment with the cross-linking reagent. These findings suggest that the protein S-C4b-binding protein complex inhibits the cofactor activity of free protein S probably by inhibition of functionally active protein S-activated protein C complex formation by the apparent competitive formation of an inactive ternary complex with protein S, C4b-binding protein, and activated protein C.  相似文献   

2.
We compared the biochemical properties of the RecA441 protein to those of the wild-type RecA protein in an effort to account for the constitutive protease activity observed in recA441 strains. The two RecA proteins have similar properties in the absence of single-stranded DNA binding protein (SSB protein), and the differences that do exist shed little light on the temperature-inducible phenotype observed in recA441 strains. In contrast, several biochemical differences are apparent when the two proteins are compared in the presence of SSB protein, and these are conducive to a hypothesis that explains the temperature-sensitive behavior observed in these strains. We find that both the single-stranded DNA (ssDNA)-dependent ATPase and LexA-protease activities of RecA441 protein are more resistant to inhibition by SSB protein than are the activities of the wild-type protein. Additionally, the RecA441 protein is more capable of using ssDNA that has been precoated with SSB protein as a substrate for ATPase and protease activities, implying that RecA441 protein is more proficient at displacing SSB protein from ssDNA. The enhanced SSB protein displacement ability of the RecA441 protein is dependent on elevated temperature. These observations are consistent with the hypothesis that the RecA441 protein competes more efficiently with SSB protein for limited ssDNA sites and can be activated to cleave repressors at elevated temperature by displacing SSB protein from the limited ssDNA that occurs naturally in Escherichia coli. Neither the ssDNA binding characteristics of the RecA441 protein nor the rate at which it transfers from one DNA molecule to another provides an explanation for its enhanced activities, leading us to conclude that kinetics of RecA441 protein association with DNA may be responsible for the properties of the RecA441 protein.  相似文献   

3.
Cross-linking of the proteins in the outer membrane of Escherichia coli.   总被引:15,自引:0,他引:15  
1. The organization of the proteins in the outer membrane of Escherichia coli was examined by the use of cross-linking agents and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment of protein A-peptidoglycan complexes with dithiobis(succinimidyl propionate) or glutaraldehyde produced the dimer, trimer, and higher oligomers of protein A. Both forms of this protein, proteins A1 and A2, produced similar cross-linking products. No cross-linking of protein A to the peptidoglycan was detected. 2. The proteins of the isolated outer membrane varied in their ease of cross-linking. The heat-modifiable protein, protein B, was readily cross-linked to give high molecular weight oligomers, while protein A formed mainly the dimer and trimer under the same conditions. The pronase resistant fragment, protein Bp, derived from protein B was not readily cross-linked. No linkage of protein A to protein B was detected. 3. Cross-linking of cell wall preparations, consisting of the outer membrane and peptidoglycan, showed that protein B and the free form of the lipoprotein, protein F, could be linked to the peptidoglycan. A dimer of protein F, and protein F linked to protein B, were detected. 4. These results suggest that specific protein-protein interactions occur in the outer membrane.  相似文献   

4.
The biochemical properties of the recA430 protein have been examined and compared to those of wild-type recA protein. We find that, while the recA430 protein possesses ssDNA-dependent rATP activity, this activity is inhibited by the Escherichia coli single-stranded DNA binding protein (SSB protein) under many conditions that enhance wild-type recA protein rATPase hydrolysis. Stimulation of rATPase activity by SSB protein is observed only at high concentrations of both rATP (greater than 1 mM) and recA430 protein (greater than 5 microM). In contrast, stimulation of ssDNA-dependent dATPase activity by SSB protein is less sensitive to protein and nucleotide concentration. Consistent with the nucleotide hydrolysis data, recA430 protein can carry out DNA strand exchange in the presence of either rATP or dATP. However, in the presence of rATP, both the rate and the extent of DNA strand exchange by recA430 protein are greatly reduced compared to wild-type recA protein and are sensitive to recA430 protein concentration. This reduction is presumably due to the inability of recA430 protein to compete with SSB protein for ssDNA binding sites under these conditions. The cleavage of lexA repressor protein by recA430 protein is also sensitive to the nucleotide cofactor present and is completely inhibited by SSB protein when rATP is the cofactor but not when dATP is used. Finally, the steady-state affinity and the rate of association of the recA430 protein-ssDNA complex are reduced, suggesting that the mutation affects the interaction of the ATP-bound form of recA protein with ssDNA. This alteration is the likely molecular defect responsible for inhibition of recA430 protein rATP-dependent function by SSB protein. The biochemical properties observed in the presence of dATP and SSB protein, i.e. the reduced levels of both DNA strand exchange activity and cleavage of lexA repressor protein, are consistent with the phenotypic behavior of recA430 mutations.  相似文献   

5.
小麦丛矮病毒是在中国发现的一种植物弹状病毒 ,病毒基因组是由一条单链负链RNA组成并编码 5种病毒结构蛋白质 :表面糖蛋白G、膜基质蛋白M、核衣壳蛋白N、大蛋白L和所谓非结构蛋白NS。后来的研究证明 ,在弹状病毒的模式病毒———水泡性口膜炎病毒中 ,NS蛋白也是一种结构蛋白 ,而且在成熟的病毒粒子中以各种磷酸化形式存在 ,并且证明NS的磷酸化和去磷酸化对病毒基因组的转录和复制的调控起重要的作用。用体外磷酸化方法证明 ,结合于小麦丛矮病毒的核衣壳上的NS蛋白可以被磷酸化 ;同时也证明 ,从大肠杆菌中表达的小麦丛矮病毒的NS蛋白 ,只有在病毒核衣壳存在下才可以体外被磷酸化 ;从而证明 ,小麦丛矮病毒或植物弹状病毒的NS蛋白也是一种磷酸化蛋白质 ,在成熟病毒粒子中可能存在磷酸化和非磷酸化两种形式。病毒的L蛋白除以前报道的具有RNA聚合酶活力外 ,也具有蛋白激酶的活力。  相似文献   

6.
重组表达猪圆环病毒2型衣壳蛋白的抗原特性分析   总被引:3,自引:0,他引:3  
将猪圆环病毒2型(PCV2 )去核定位信号衣壳蛋白(Nuclearlocalizationsignal_defectedcapsidprotein ,dCap)与谷胱甘肽_S_转移酶(GST)融合,在大肠杆菌中表达,经纯化和凝血酶剪切分别获得纯化的GST_dCap融合蛋白和dCap蛋白,Westernblot结果表明二者都能与猪抗PCV2血清发生特异性反应。dCap蛋白免疫小鼠制备的单克隆抗体,不仅能特异地与GST_dCap融合蛋白、dCap蛋白和纯化的PCV2粒子发生反应,而且能特异地与PK_15细胞内的PCV2病毒颗粒发生反应,其中抗dCap蛋白的单克隆抗体4C4、3F6和2G7具有阻止病毒感染细胞的能力。表明原核表达的dCap蛋白完全或部分正确模拟了PCV2天然衣壳蛋白的构像,PCV2衣壳蛋白存在阻止PCV2病毒感染细胞的功能性表位。同时重组PCV2dCap蛋白的获得为进一步研究Cap蛋白晶体结构和将重组的dCap蛋白作为抗原建立血清学诊断试剂及疫苗研究提供了基础  相似文献   

7.
The apparent molecular weight of functional protein S in citrated plasma was observed to be between 115,000 and 130,000 as measured by sedimentation equilibrium in the air-driven ultracentrifuge. The molecular weight of the functional protein decreased to approximately 62,000 when copper ions were added to the plasma. This suggested the presence of a protein S-binding protein in plasma, which was confirmed by gel filtration experiments. Frontal analysis of plasma indicated that functional protein S could exist in as many as three forms. Addition of copper ions to plasma reduced the number of forms to one. In order to isolate the binding protein, plasma was fractionated first on a column of immobilized iminodiacetic acid that had been equilibrated with copper ions. The proteins that eluted in a 0.6 M NaCl wash were passed over a column of protein S immobilized on agarose beads. A protein, eluted in the 0.6 M NaCl wash, was observed to bind to protein S in gel filtration experiments. When added to plasma depleted of both protein S and the binding protein, the binding protein was observed to enhance the anticoagulant activity of activated protein C only in the presence of protein S. Protein S-binding protein was also observed to enhance the rate of factor Va inactivation by activated protein C and protein S.  相似文献   

8.
By treating the reduced MoFe protein of nitrogenase from Azotobacter vinelandii with O-phenanthroline (O-phen) and O2, inactive MoFe protein which was partialy deficient in both P-cluster and FeMoco could be obtained. After incubating the inactive protein with a reconstituent solution containing KMnO4, ferric homocitrate, Na2S and dithiothreitol, a reconstituted protein could be obtained. The absorption spectrum and C2H2, H+ and N2 reduction activity of the reconstituted protein could be well restored to the state of the reduced MoFe protein. However, the α-helix and CD spectrum at 380—550 nm and at 620—670 nm of the reconstituted protein were somewhat different from those of the reduced MoFe protein. The results showed that: (1) the reconstituted protein was composed of the assembled protein which might be a MnFe protein due to the reconstitution of the metalloclusterdeficient MoFe protein with Mn-containing solution and MoFe protein in which metalloclusters were still intact after the treatment with O-phen and O2; (2) It might be possible that the MnFe protein and MoFe protein were similar in the ability of nitrogen fixation, but were somewhat different in the structure from each other.  相似文献   

9.
In the outer membrane of P. aeruginosa, a protein of apparent molecular weight 8,000 (protein I) is present as a major protein. Purification and chemical analysis of protein I were carried out. This protein was purified by essentially the same procedure as for the purification of the E. coli lipoprotein, which was developed by Inouye et al. (J. Bacteriol. (1976) 127, 555--563). The amino acid composition of protein I was determined. Protein I lacks proline, valine, isoleucine, phenylalanine, tryptophan, and half-cystine. Fatty acid analysis of the protein revealed that it contained 0.89 mol of fatty acids per mol of protein. Among the fatty acids hexadecanoic acid (C16:0) was predominant. In an in vivo labeling experiment, [2-3H]glycerol was incorporated into protein I. A protein with similar mobility to protein I on urea-SDS polyacrylamide gel electrophoresis was isolated from the purified peptidoglycan of P. aeruginosa by trypsin digestion. The amino acid composition of this protein was essentially the same as that of protein I. These results indicate that the outer membrane of P. aeruginosa contains a protein analogous to the E. coli lipoprotein, although considerable differences were observed in the amino acid composition and the fatty acid content.  相似文献   

10.
In cartilage proteoglycan aggregates, link protein stabilizes the binding of proteoglycan monomers to hyaluronate by binding simultaneously to hyaluronate and to the G1 globular domain of proteoglycan monomer core protein. Studies reported here involving metal chelate affinity chromatography demonstrate that link protein is a metalloprotein that binds Zn2+, Ni2+, and Co2+. Zn2+ and Ni2+ decrease the solubility of link protein and result in its precipitation. However, link protein is readily soluble and functional in low ionic strength solvents from which divalent cations have been removed with Chelex 100. These observations make it possible to study the biochemical properties of link protein in low ionic strength, physiologic solvents. Studies were carried out to define the oligomeric state of link protein alone in physiologic solvents, and the transformation in oligomeric state that occurs when link protein binds hyaluronate. Sedimentation equilibrium studies demonstrate that in 0.15 M NaCl, 5 mM EDTA, 50 mM Tris, pH 7, link protein exists as a monomer-hexamer equilibrium controlled by a formation constant of 2 x 10(27) M-5, yielding a delta G' of -36 kcal/mol for the formation of the hexamer from six monomers. On binding hyaluronate oligosaccharides (HA10 or HA12), link protein dissociates to dimer. Link protein hexamer is rendered insoluble by Zn2+. Greater than 90% of the protein is precipitated by 2 mol of Zn2+/mol of link protein monomer. The binding of hyaluronate oligosaccharide by link protein strongly inhibits the precipitation of link protein by Zn2+. The link protein/hyaluronate oligosaccharide complex is completely soluble in the presence of 2 mol of Zn2+/mol of link protein. At higher molar ratios of Zn2+/link protein, the inhibitory effect of hyaluronate oligosaccharide on the precipitation of link protein is gradually overcome. Hyaluronate oligosaccharide is not dissociated from link protein by Zn2+. Hyaluronate remains bound to the link protein which is precipitated by Zn2+, or to the link protein which binds to Zn2(+)-charged iminodiacetate-Sepharose columns. Hyaluronate oligosaccharides and Zn2+ bind to different sites on link protein.  相似文献   

11.
The rat cerebellum contains a significant amount of cGMP-dependent protein kinase, cAMP-dependent and cyclic nucleotide-independent protein kinases, and a large concentration of protein kinase inhibitors. These inhibitors are thermostable proteins which can be separated by gel chromatography into two molecular forms: the type 1 and type 2 inhibitors of protein kinase (14). The type 1 inhibitor blocks the rat cerebellar cAMP-dependent protein kinase activity while the type 2 inhibitor blocks the cGMP-dependent protein kinase, the cAMP-dependent protein kinase, and the cyclic nucleotide-independent protein kinases. The activity of the type 2 inhibitor increased or decreased in opposite direction to changes of cerebellar cGMP content generated by injection of 10 mg/kg harmaline or 2.5 mg diazepam. No changes of type 1 inhibitor were observed under these conditions. The drug-induced shift of type 2 inhibitor of protein kinase was not mediated by changes in protein synthesis because it persisted after pretreatment with cycloheximide. These results are compatible with the hypothesis that cGMP modulates phosphorylation in cerebellum by changing the relationship between cGMP-dependent protein kinase and type 2 inhibitor content.  相似文献   

12.
The recA730 mutation results in constitutive SOS and prophage induction. We examined biochemical properties of recA730 protein in an effort to explain the constitutive activity observed in recA730 strains. We find that recA730 protein is more proficient than the wild-type recA protein in the competition with single-stranded DNA binding protein (SSB protein) for single-stranded DNA (ssDNA) binding sites. Because an increased aptitude in the competition with SSB protein has been previously reported for recA441 protein and recA803 protein, we directly compared their in vitro activities with those of recA730 protein. At low magnesium ion concentration, both ATP hydrolysis and lexA protein cleavage experiments demonstrate that these recA proteins displace SSB protein from ssDNA in a manner consistent with their in vivo repressor cleavage activity, i.e. recA730 protein > recA441 protein > recA803 protein > recAwt protein. Additionally, a correlation exists between the proficiency of the recA proteins in SSB protein displacement and their rate of association with ssDNA. We propose that an increased rate of association with ssDNA allows recA730 protein to displace SSB protein from the ssDNA that occurs naturally in Escherichia coli and thereby to become activated for the repressor cleavage that leads to SOS induction. RecA441 protein is similarly activated for repressor cleavage; however, in this case, significant SSB protein displacement occurs only at elevated temperature. At physiological magnesium ion concentration, we argue that recA803 protein and wild-type recA protein do not displace sufficient SSB protein from ssDNA to constitutively induce the SOS response.  相似文献   

13.
ABSTRACT. Protein phosphorylation events may play important roles in the replication and differentiation of the malarial parasite. Investigations into the lability of a Plasmodium protein kinase revealed that a 34 kDa parasite phosphoprotein is rapidly converted into a 19 kDa fragment. Coincident with this conversion is a nearly total loss of a protein kinase activity, as determined from the phosphorylation of endogenous protein substrates. Both the conversion of the 34 kDa protein to the 19 kDa protein and the loss of protein kinase activity are inhibited by thio-protease inhibitors. The presence of low levels of the intact 34 kDa protein restores the protein kinase activity to almost maximum levels. However, it was not possible to demonstrate protein kinase activity associated with the 34 kDa protein, thus suggesting that the 34 kDa protein is probably an activator or regulator of the protein kinase activity and not a protein kinase. The conversion to the 19 kDa fragment also occurs in vivo and only during the schizont stage prior to the appearance of ring forms. During this same period the protein kinase activity decreases suggesting that the proteolytic processing of the 34 kDa protein may be a physiological regulator of the protein kinase.  相似文献   

14.
15.
Proteomics was used to identify a protein encoded by ORF 3a in a SARS-associated coronavirus (SARS-CoV). Immuno-blotting revealed that interchain disulfide bonds might be formed between this protein and the spike protein. ELISA indicated that sera from SARS patients have significant positive reactions with synthesized peptides derived from the 3a protein. These results are concordant with that of a spike protein-derived peptide. A tendency exists for co-mutation between the 3a protein and the spike protein of SARS-CoV isolates, suggesting that the function of the 3a protein correlates with the spike protein. Taken together, the 3a protein might be tightly correlated to the spike protein in the SARS-CoV functions. The 3a protein may serve as a new clinical marker or drug target for SARS treatment.  相似文献   

16.
Primary 24-hour cultures of hepatocytes on slides in a serum-free medium were studied. Circahoralian rhythm of protein synthesis served as a marker of cell cooperation. Stimulation of protein kinase activities by phorbol 12-myristate 13-acetate at 0.5 or 1.0 microM or forskolin at 10 microM led to visualization of the protein synthesis rhythm in sparse cultures, which were asynchronous in the control and with linear kinetics of protein synthesis. Inhibitors of protein kinase activities H7 (1-(5-isoquinolinylsulfonyl)-5-methylpiperasine dihydrochloride) at 40 microM or H8 (N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride) at 25 microM eliminated the protein synthesis rhythm in dense cultures, which are normally synchronous with oscillatory kinetics of protein synthesis. After inhibition of the protein kinase activities, gangliosides or phenylephrine did not synchronize the protein synthesis rhythm. Phorbol 12-myristate 13-acetate modulated the protein synthesis rhythm, shifted the rhythm phase, i.e., stimulation of the protein kinase activities, and, correspondingly, protein phosphorylation may be a factor of synchronization of synthesis oscillations in individual cells and of population rhythm formation. Thus, a cascade of processes leading to self-organization of hepatocytes during formation of summarized protein synthesis was revealed in a series of studies: signal of gangliosides or other calcium agonists-->changes in the level of calcium ions in cytoplasm-->increased protein kinase activities-->protein phosphorylation-->modulation of individual oscillations in the intensity of protein synthesis and their coordination in a summarized rhythm. cAMP-dependent protein kinases also affect the protein synthesis rhythm. Protein phosphorylation is a key process. The mechanisms of cell self-organization are similar in vitro and in vivo, specifically in the liver in situ.  相似文献   

17.
Primary 24-hour cultures of hepatocytes on slides in a serum-free medium were studied. Circahoralian rhythm of protein synthesis served as a marker of cell cooperation. Stimulation of protein kinase activities by phorbol 12-myristate 13-acetate at 0.5 or 1.0 μM or forskolin at 10 μM led to visualization of the protein synthesis rhythm in sparse cultures, which were asynchronous in the control and with linear kinetics of protein synthesis. Inhibitors of protein kinase activities H7 (1-(5-isoquinolinylsulfonyl)-5-methylpiperasine dihydrochloride) at 40 μM or H8 (N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride) at 25 μM eliminated the protein synthesis rhythm in dense cultures, which are normally synchronous with oscillatory kinetics of protein synthesis. After inhibition of the protein kinase activities, gangliosides or phenylephrine did not synchronize the protein synthesis rhythm. Phorbol 12-myristate 13-acetate modulated the protein synthesis rhythm, shifted the rhythm phase, i.e., stimulation of the protein kinase activities, and, correspondingly, protein phosphorylation may be a factor of synchronization of synthesis oscillations in individual cells and of population rhythm formation. cAMP-dependent protein kinases also affect the protein synthesis rhythm. Thus, a cascade of processes leading to self-organization of hepatocytes during formation of summarized protein synthesis was revealed in a series of studies: signal of gangliosides or other calcium agonists → changes in the level of calcium ions in cytoplasm → increased protein kinase activities → protein phosphorylation → modulation of individual oscillations in the intensity of protein synthesis and their coordination in a summarized rhythm. Protein phosphorylation is a key process. The mechanisms of cell self-organization are similar in vitro and in vivo, specifically in the liver in situ.  相似文献   

18.
Bacteriophage T7 gene 2.5 protein has been shown to interact with T7 DNA polymerase (the complex of T7 gene 5 protein and Escherichia coli thioredoxin) by affinity chromatography and fluorescence emission anisotropy. T7 DNA polymerase binds specifically to a resin coupled to gene 2.5 protein and elutes from the resin when the ionic strength of the buffer is raised to 250 mM NaCl. In contrast, T7 gene 5 protein alone binds more weakly to gene 2.5 protein, eluting when the ionic strength of the buffer is 50 mM NaCl. Thioredoxin does not bind to gene 2.5 protein. Steady-state fluorescence emission anisotropy gives a dissociation constant of 1.1 +/- 0.2 microM for the complex of gene 2.5 protein and T7 DNA polymerase, with a ratio of gene 2.5 protein to T7 DNA polymerase in the complex of 1:1. Nanosecond emission anisotropic analysis suggests that the complex contains one monomer each of gene 2.5 protein, gene 5 protein, and thioredoxin. The ability of T7 gene 2.5 protein to stimulate the activity and processivity of T7 DNA polymerase is compared with the ability of three other single-stranded DNA-binding proteins: E. coli single-stranded DNA-binding protein, T4 gene 32 protein, and E. coli recA protein. All except E. coli recA protein stimulate the activity and processivity of T7 DNA polymerase; E. coli recA protein inhibits these activities.  相似文献   

19.
The protein C pathway is an important regulator of the blood coagulation system. Protein C may also play a role in inflammatory and immunomodulatory processes. Whether protein C or activated protein C affects lymphocyte migration and possible mechanisms involved was tested. Lymphocyte migration was studied by micropore filter assays. Lymphocytes that were pretreated with protein C (Ceprotin) or activated protein C (Xigris) significantly reduced their migration toward IL-8, RANTES, MCP-1, and substance P, but not toward sphingosine-1-phosphate. The inhibitory effects of protein C or activated protein C were reversed by Abs against endothelial protein C receptor and epidermal growth factor receptor. Evidence for the synthesis of endothelial protein C receptor by lymphocytes is shown by demonstration of receptor mRNA expression and detection of endothelial protein C receptor immunoreactivity on the cells' surface. Data suggest that an endothelial protein C receptor is expressed by lymphocytes whose activation with protein C or activated protein C arrests directed migration. Exposure of lymphocytes to protein C or activated protein C stimulates phosphorylation of Tyr845 of epidermal growth factor receptor, which may be relevant for cytoprotective effects of the protein C pathway.  相似文献   

20.
Uncoupling protein 3L, uncoupling protein 1 and the mitochondrial oxoglutarate carrier were expressed in Saccharomyces cerevisae. Effects on different parameters related to the energy expenditure were studied. Both uncoupling protein 3L and uncoupling protein 1 reduced the growth rate by 49% and 32% and increased the whole yeast O2 consumption by 31% and 19%, respectively. In isolated mitochondria, uncoupling protein 1 increased the state 4 respiration by 1.8-fold, while uncoupling protein 3L increased the state 4 respiration by 1.2-fold. Interestingly, mutant uncoupling protein 1 carrying the H145Q and H147N mutations, previously shown to markedly decrease the H+ transport activity of uncoupling protein 1 when assessed using a proteoliposome system (Bienengraeber et al. (1998) Biochem. 37, 3-8), uncoupled the mitochondrial respiration to almost the same degree as wild-type uncoupling protein 1. Thus, absence of this histidine pair in uncoupling protein 2 and uncoupling protein 3 does not by itself rule out the possibility that these carriers have an uncoupling function. The oxoglutarate carrier had no effect on any of the studied parameters. In summary, a discordance exists between the magnitude of effects of uncoupling protein 3L and uncoupling protein 1 in whole yeast versus isolated mitochondria, with uncoupling protein 3L having greater effects in whole yeast and a smaller effect on the state 4 respiration in isolated mitochondria. These findings suggest that uncoupling protein 3L, like uncoupling protein 1, has an uncoupling activity. However, the mechanism of action and/or regulation of the activity of uncoupling protein 3L is likely to be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号