首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair.  相似文献   

6.
7.
8.
The initial step in mammalian nucleotide excision repair (NER) of the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs), requires lesion recognition. It is believed that the heterodimeric proteins XPC/hHR23B and UV-DDB (UV-damaged DNA binding factor, composed of the p48 and p127 subunits) perform this function in genomic DNA, but their requirement and lesion specificity in vivo remains unknown. Using repair-deficient xeroderma pigmentosum (XP)-A cells that stably express photoproduct-specific photolyases, we determined the binding characteristics of p48 and XPC to either CPDs or 6-4PPs in vivo. p48 localized to UV-irradiated sites that contained either CPDs or 6-4PPs. However, XPC localized only to UV-irradiated sites that contained 6-4PPs, suggesting that XPC does not efficiently recognize CPDs in vivo. XPC did localize to CPDs when p48 was overexpressed in the same cell, signifying that p48 activates the recruitment of XPC to CPDs and may be the initial recognition factor in the NER pathway.  相似文献   

9.
10.
The 14th Datta Lecture. TFIIH: from transcription to clinic.   总被引:1,自引:0,他引:1  
J M Egly 《FEBS letters》2001,498(2-3):124-128
  相似文献   

11.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

12.
13.
14.
15.
16.
XPB and XPD subunits of TFIIH are central genome caretakers involved in nucleotide excision repair (NER), although their respective role within this DNA repair pathway remains difficult to delineate. To obtain insight into the function of XPB and XPD, we studied cell lines expressing XPB or XPD ATPase‐deficient complexes. We show the involvement of XPB, but not XPD, in the accumulation of TFIIH to sites of DNA damage. Recruitment of TFIIH occurs independently of the helicase activity of XPB, but requires two recently identified motifs, a R‐E‐D residue loop and a Thumb‐like domain. Furthermore, we show that these motifs are specifically involved in the DNA‐induced stimulation of the ATPase activity of XPB. Together, our data demonstrate that the recruitment of TFIIH to sites of damage is an active process, under the control of the ATPase motifs of XPB and suggest that this subunit functions as an ATP‐driven hook to stabilize the binding of the TFIIH to damaged DNA.  相似文献   

17.
Human nucleotide excision repair is initiated by six repair factors (XPA, RPA, XPC-HR23B, TFIIH, XPF-ERCC1, and XPG) which sequentially assemble at sites of DNA damage and effect excision of damage-containing oligonucleotides. We here describe the molecular anatomy of the human excision nuclease assembled at the site of a psoralen-adducted thymine. Three polypeptides, primarily positioned 5' to the damage, are in close physical proximity to the psoralen lesion and thus are cross-linked to the damaged DNA: these proteins are RPA70, RPA32, and the XPD subunit of TFIIH. While both XPA and XPC bind damaged DNA and are required for XPD cross-linking to the psoralen-adducted base, neither XPA nor XPC is cross-linked to the psoralen adduct. The presence of other repair factors, in particular TFIIH, alters the mode of RPA binding and the position of its subunits relative to the psoralen lesion. Based on these results, we propose that RPA70 makes the initial contact with psoralen-damaged DNA but that within preincision complexes, it is RPA32 and XPD that are in close contact with the lesion.  相似文献   

18.
19.
Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. Defects in NER result in three different human disorders, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). Two cases with the combined features of XP and CS have been assigned to the XP-D complementation group. Despite their extreme UV sensitivity, these cells appeared to incise their DNA as efficiently as normal cells in response to UV damage. These incisions were, however, uncoupled from the rest of the repair process. Using cell-free extracts, we were unable to detect any incision activity in the neighbourhood of the damage. When irradiated plasmids were introduced into unirradiated XP-D/CS cells, the ectopically introduced damage triggered the induction of breaks in the undamaged genomic DNA. XP-D/CS cells thus have a unique response to sensing UV damage, which results in the introduction of breaks into the DNA at sites distant from the damage. We propose that it is these spurious breaks that are responsible for the extreme UV sensitivity of these cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号