首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The striatum is part of a multisynaptic loop involved in translating higher order cognitive activity into action. The main striatal computational unit is the medium spiny neuron, which integrates inputs arriving from widely distributed cortical neurons and provides the sole striatal output.2. The membrane potential of medium spiny neurons' displays shifts between a very negative resting state (down state) and depolarizing plateaus (up states) which are driven by the excitatory cortical inputs.3. Because striatal spiny neurons fire action potentials only during the up state, these plateau depolarizations are perceived as enabling events that allow information processing through cerebral cortex – basal ganglia circuits. In vivo intracellular recording techniques allow to investigate simultaneously the subthreshold behavior of the medium spiny neuron membrane potential (which is a reading of distributed patterns of cortical activity) and medium spiny neuron firing (which is an index of striatal output).4. Recent studies combining intracellular recordings of striatal neurons with field potential recordings of the cerebral cortex illustrate how the analysis of the input–output transformations performed by medium spiny neurons may help to unveil some aspects of information processing in cerebral cortex – basal ganglia circuits, and to understand the origin of the clinical manifestations of Parkinson's disease and other neurologic and neuropsychiatric disorders that result from alterations in dopamine-dependent information processing in the cerebral cortex – basal ganglia circuits.  相似文献   

2.
The two major cortices of the brain--the cerebral and cerebellar cortex--are massively connected through intercalated nuclei (pontine, cerebellar and thalamic nuclei). We suggest that the two cortices co-operate by generating precise temporal patterns in the cerebral cortex that are detected in the cerebellar cortex as temporal patterns assembled spatially in the mossy fibers. We will begin by showing that the tidal-wave mechanism works in the cerebellar cortex as a read-out mechanism for such spatio-temporal patterns due to the synchronous activity they generate in the parallel fiber system which drives the Purkinje cells--the output neurons of the cerebellar cortex--to fire action potentials. We will review the anatomy of the mossy fibers and show that within a "beam", or "row" of cerebellar cortex the mossy fibers in principle could embed a vast number of tidal-wave generating sequences. Based on anatomical data we will argue that the cerebellar mossy fiber-granule cell-Purkinje cell system can potentially detect and--through learning--select from an enormous number of spatio-temporal patterns.  相似文献   

3.
Retrograde degeneration of the cerebellar nuclei cells has been studied after partial ablation of the associative parietal cerebral cortex in the cat. The material is stained after Nissl. Retrogradely degenerated and normal cells are counted. The "ghost-cells" in the cerebellar nuclei indicate that a direct axonal connection exists between some neurons and the cerebral cortex operated, while the cells that are at other stages of degeneration are, perhaps, connected with this part of the cortex by means of axonal collaterals.  相似文献   

4.
The active avoidance training of rats resulted in a depletion of lipid peroxidation (LPO) products in cerebral cortex. LPO inhibition was also shown in cerebral cortex of "active control" group receiving +non-combined stimuli (the effect of short-term stress). LPO inhibition was more pronounced in rats staining a training criterion compared to rats which received combined stimuli but did not reach the criterion. In the active control group LPO inhibition was accompanied by total phospholipids accumulation and cholesterol depletion in cortical lipid extracts. Irrespective of attaining the criterion in all rats trained for active avoidance the accumulation of cholesterol was seen. Active avoidance training affected also the phospholipid composition of cerebral cortex.  相似文献   

5.
6.
Implantation of cobalt powder in the cerebral cortex of rat determines an epileptogenic focus where two types of reactive astrocytes are observed. The first type is mostly represented in the subcortical white matter but it does exist in the cortex around the implant. Phosphorylase and branching enzyme are both very active in these cells which are filled with glycogen. The second type is limited to the cortex and phosphorylase activity leads to an unbranched polysaccharid. These cells correspond to the "activated astrocytes" described by the authors in a previous paper and observed round irritative lesions which, in the cerebral cortex, produce epileptogenic foci.  相似文献   

7.
Metabolic abnormalities observed in retina and in cerebral cortex were compared in diabetic rats and experimentally galactosemic rats. Diabetes or experimental galactosemia of 2 months duration significantly increased oxidative stress in retina, as shown by elevation of retinal thiobarbituric acid reactive substances (TBARS) and subnormal activities of antioxidant defense enzymes, but had no such effect in the cerebral cortex. Activities of sodium potassium adenosine triphosphatase [(Na,K)-ATPase] and calcium ATPase became subnormal in retina as well as in cerebral cortex. In contrast, protein kinase C (PKC) activity was elevated in retina but not in cerebral cortex in the same hyperglycemic rats. Dietary supplementation with an antioxidant mixture (containing ascorbic acid, Trolox, α-tocopherol acetate, N-acetyl cysteine, β-carotene, and selenium) prevented the diabetes- induced and galactosemia-induced elevation of retinal oxidative stress, the elevation of retinal PKC activity and the decrease of retinal ATPases. In cerebral cortex, administration of the antioxidant diet also prevented the diabetes-induced decreases in (Na,K)-ATPase and calcium ATPases, but had no effect on TBARS and activities of PKC and antioxidant-defense enzymes. The results indicate that retina and cerebral cortex differ distinctly in their response to elevation of tissue hexose, and that cerebral cortex is more resistant than retina to diabetes-induced oxidative stress. The greater resistance to oxidative stress in cerebral cortex, as compared to retina, is consistent with the resistance of cerebral cortex to microvascular disease in diabetes, and with a hypothesis that oxidative stress contributes to microvascular disease in diabetes. Dietary supplementation with these antioxidants offers a means to inhibit multiple hyperglycemia-induced retinal metabolic abnormalities.  相似文献   

8.
Findings. Specific [3H]flunitrazepam binding to neuronal-type sites was significantly lower in anterior cingulate cortex, hippocampus, somatomotor cortex, cerebellar cortex, and globus pallidus in small postmortem samples of schizophrenic brains than in non-schizophrenic controls. Four of these five brain regions were reported by others to exhibit atrophy and/or neuronal loss in schizophrenia.Interpretation: Selective loss of hippocampal pyramidal neurons in postmortem schizophrenic brains has been reported (11). Pyramidal neurons are known to be glutamatergic (14, 26) and to exhibit high densities of benzodiazepine binding sites (25,31). Glutamatergic neurons are known to be abundant in most layers of the cerebral cortex, and most of these are pyramidal neurons (26). All layers of the cerebral cortex display high densities of benzodiazepine binding sites (24,25,31). The number of large pyramidal cells is little affected in most layers of the anterior cingulate cortex, but the number of small neurons is significantly lower, particularly in layer II (10). Pyramidal neurons range in size from very large to very small, and many very small pyramidal cells are often counted, together with small stellate neurons, as granule cells (28). Further, non-pyramidal glutamatergic neurons are reportedly also found in cerebral cortex (26). Thus, it seems possible that the large reduction in [3H]flunitrazepam binding we find in anterior cingulate cortex reflects the selective loss of glutamatergic neurons. The hypothesis that selective loss of glutamatergic neurons form various brain regions is associated with major psychoses can be easily tested by immunohistochemical studies of these regions using glutamate- and GABA-specific antibodies.  相似文献   

9.
Optical resolution photoacoustic microscopy (ORPAM) is an emerging imaging technique, which has been extensively used to study various brain activities and disorders of the anesthetized/restricted rodents with a special focus on the morphological and functional visualization of cerebral cortex. However, it is challenging to develop a wearable photoacoustic microscope, which enables the investigation of brain activities/disorders on freely moving rodents. Here, we report a wearable and robust optical resolution photoacoustic microscope (W‐ORPAM), which utilizes a small, light, stable and fast optical scanner. This wearable imaging probe features high spatiotemporal resolution, large field of view (FOV) and easy assembly as well as adjustable optical focus during the in vivo experiment, which makes it accessible to image cerebral cortex activities of freely moving rodents. To demonstrate the advantages of this technique, we used W‐ORPAM to monitor both morphological and functional variations of vasculature in cerebral cortex during the induction of ischemia and reperfusion of a freely moving rat.  相似文献   

10.
In the paper Pavlov's idea is used about "the bright spot of consciousness" as a zone of increased excitability which moves over the cerebral cortex. Zone of increased activation is revealed migrating from the frontal parts of the left hemisphere to the occipital parts of the right hemisphere. By means of various methods (record of amplitude and latency of the visual evoked responses, frequency and amplitude of the dominant rhythm, spectral-coherent analysis of the electroencephalogram) the activation of focus in the cerebral cortex was singled out, which moved, depending on the novelty, complication and degree of automatization of the task, from the frontal parts of the left hemisphere to the occipital parts of the right hemisphere. A parallel is drawn between Pavlov's hypothesis on the focus of consciousness as foci of increased brain activity, and revealed foci of activation. The conclusion is made about fluctuations of consciousness level as a factor which is in the basis of activation focus migration.  相似文献   

11.
Although many reports have argued a role for nitric oxide (NO) during postnatal development, there has been no combined demonstration in the cerebral cortex and hippocampus. We have investigated the distribution and morphology of neurons and fibers expressing neuronal NO synthase (nNOS) in the cerebral cortex and hippocampal formation of rats during the postnatal development, and correlated these findings with developmental events taking place in these regions. In the cerebral cortex, the nNOS-immunoreactive cells could be divided into two classes : heavily stained neurons and lightly stained neurons. For the lightly stained nNOS-positive neurons, only the cell bodies were observed, whereas for the heavily stained neurons, the cell bodies and their dendrites were visible. During the postnatal days, heavily stained neurons reached their typical morphology in the second week and appeared in all layers except for layer I. In the hippocampus, there was a transient expression of nNOS in the pyramidal cell layer at P3â€P7, and this expression disappeared during following days. The adult pattern of staining developed gradually during the postnatal period. This study suggested that these alterations might reflect a region-specific role of NO and a potential developmental role in the postnatal cerebral cortex and hippocampus  相似文献   

12.
In order to investigate changes in energy metabolism, neurotransmitters, and membrane disorder accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats was utilized. We measured concentrations of ATP, phosphocreatine (PCr), lactate (Lac), glucose (Glu), acetylcholine (ACh), choline (Ch), and -aminobutyric acid (GABA) in both the cerebral cortex and the subcortical regions after 1 h ischemia, 2 h ischemia, and 2 h reflow following 2 h ischemia, and then examined changes in concentrations of these substances during and after incomplete cerebral ischemia. Also examined were interrelations of changes in these substance levels during ischemia. In the cerebral cortex, levels of ATP, PCr, Glu, and ACh decreased, and levels of Lac, Ch, and GABA increased during ischemia. After recirculation, levels of ATP, PCr, Ch, and GABA tended to return to the normal range. On the other hand, the Lac level remained in the ischemic range and the Glu level rose and greatly exceeded the normal range. With regard to ACh, most animals showed normal levels but some exceeded the normal range. Changes in the subcortical regions were qualitatively the same as those in the cerebral cortex during and after ischemia (except with Glu), but only smaller in degrees. Glu levels remained unchanged during ischemia. Correlation of the levels of these substances in the cerebral cortex was examined using normal and ischemic values. A high correlation was generally observed between ATP and other substance levels. The relations between ATP and either PCr or Glu levels were linear. The relation between ATP and ACh levels was logarithmic. The relations between ATP and either Lac, Ch, or GABA levels were exponential. Namely, ACh, Lac, Ch, and GABA levels stayed constant until ATP fell to some fixed low level, suggesting the existence of a threshold. High correlations were also observed among Lac, Ch, and GABA levels.  相似文献   

13.
In vivo protein synthesis rates in various brain regions (cerebral cortex, cerebellum, hippocampus, hypothalamus, and striatum) of 4-, 12-, and 24-month-old rats were examined after injection of a flooding dose of labeled valine. The incorporation of labeled valine into proteins of mitochondrial, microsomal, and cytosolic fractions from cerebral cortex and cerebellum was also measured. At all ages examined, the incorporation rate was 0.5% per hour in cerebral cortex, cerebellum, hippocampus, and hypothalamus and 0.4% per hour in striatum. Of the subcellular fractions examined, the microsomal proteins were synthesized at the highest rate, followed by cytosolic and mitochondrial proteins. The results obtained indicate that the average synthesis rate of proteins in the various brain regions and subcellular fractions examined is fairly constant and is not significantly altered in the 4 to 24-month period of life of rats.A preliminary report of these results was previously presented at: WFN-ESN Joint Meeting on: Cerebral Metabolism in Aging and Neurological Disorders, Baden, August 28–31, 1986.  相似文献   

14.
Effects of 7-min cardiac arrest and individual behavior on free radical-mediated processes and nitric oxide synthase (NOS) activity was evaluated in brains of male Wistar rats one hour and one week after resuscitation. "Emotional resonance test was used for the behavioral selection of rats. The test includes factors of significance for rats: the choice between large and lighted or small and dark space as well as signals of pain of another rat. Free radical generation (using chemiluminescence method), superoxide scavenging/generating activity, substances reacting with 2-thiobarbituric acid and NOS activity (by measuring mononitrosyl iron complex of NO with diethyl dithiocarbamate and endogenous brain Fe2+ by electron spin resonance spectroscopy) were determined in cerebral cortex, cerebellum and hippocampus. Cardiac arrest induced oxidative stress accompanied by the loss of NOS activity, as well as compensatory changes of free radical-mediated processes in cerebral cortex. Oxidative stress was also evident in cerebellum and, to a lesser extent, in hippocampus. Most of neurochemical differences between behavioral groups were induced by cardiac arrest. These differences were global, related to a specific brain region or became apparent in cerebral lateralization of biochemical indices.  相似文献   

15.
胃扩张刺激对大鼠大脑皮层及海马CCK mRNA表达的影响   总被引:3,自引:1,他引:2  
Tang M  Ni H  Xu L 《生理学报》1999,51(5):488-494
胆囊收缩素(cholecystokinin,CCK)是脑肠肽中的一种,被认为是饱因子。本实验采用以地高辛标记的CCK cDNA为探针的原位杂交和半定量RT-PCR技术。用水囊扩张胃作为对胃壁的机械刺激模拟食物对胃的充盈作用,观察大鼠大脑皮层和海马内含CCK神经元CCK mRNA表达的变化情况。  相似文献   

16.
Changes in the biophysical and biochemical character of membranes brought about by ethanol have been emphasized in the underlying mechanism of alcohol toxicity. Membrane enzymes such as Na+, K+ activated ATPase, 5-nucleotidase, and -glutamyl transpeptidase were studied in cerebral cortex, cerebellum, and brain stem of rats subjected to acute and short term ethanol toxicity. Acute ethanol toxicity was induced by intraperitoneal injection of 1 ml of 7M ethanol per 100 g body weight of rat and the animals were sacrificed half an hour after the administration. Short term ethanol toxicity was induced by intraperitoneal injections of 0.5 ml (7 M ethanol) per 100 g weight of the rat for 7 days and the animals were sacrificed half an hour after the last injection. In acute ethanol toxicity the activity of Na+, K+-activated ATPase was found to decrease significantly in cerebral cortex and brain stem, while in short term alcohol toxicity, the activity was found to increase in cerebral cortex and cerebellum. The activity of -glutamyl transpeptidase was found to increase in all the three regions in acute and short term ethanol toxicity. No change in the activity of 5-nucleotidase was observed in any of the regions either in acute or in chronic ethanol toxicity. While a significant increase in the activity of adenosine deaminase was found in cerebral cortex, cerebellum, and brain stem in acute ethanol toxicity, the same was found to decrease significantly in cerebral cortex and a persistent increase in brain stem in short term ethanol toxicity. The above changes in the activities of the enzyme were discussed with reference to the well known changes in the membrane structure and consequent alteration in brain function.This work forms part of a Ph.D. thesis.  相似文献   

17.
The characterization of the functional interactions between the metabotropic glutamate receptors (mGluR) and the dopaminergic (DR) receptors in the corticostriatal projections may provide a possible interpretation of synaptic events in the basal ganglia. It has been suggested that presynaptic D2-type receptor located on glutamatergic corticostriatal neurons regulates the release of glutamate. In a first approach we have studied the cellular distribution of the D4R and the mGluRs in cerebral cortex and striatum employing immunocytochemistry. D4R positive neurons were particularly numerous in medial prefrontal cortex mainly occupying layers II and III. An even distribution was found on small round-shaped neurons in the striatum. Group I mGluR1-like immunoreactivity (mGluR1-LI) was found in medial and deep layers of the cerebral cortex while group III mGluR4a labeled more superficial layers; group II mGluR2/3 signal was intense on fine fibers with a punctate appearance. In the striatum, mGluR1 and mGluR2/3 stained mainly fibers while mGluR4a labeled round shaped cell bodies. After lateral ventricular injection of colchicine, an axonal transport and firing activity blocker, D4R labeling significantly increased in cerebral cortex and decreased in the striatum. mGluR1 and mGluR4a signal decreased in cerebral cortex and only mGluR4a signal decreased in the striatum. These results support previous reports indicating a presynaptic localization of D4R in the striatum. In contrast, striatal mGluR1 appears to be a postsynaptic receptor probably synthesized in situ. Our results do not support the hypothesis of a colocalization of D4 receptor and one or more of the metabotropic glutamatergic receptors studied here.  相似文献   

18.
Here, we studied the effect of the mitochondria-targeted antioxidant SkQ1 (plastoquinone cationic derivative) on the CASP3 gene expression and caspase-3 activity in rat cerebral cortex and brain mitochondria under normal conditions and in oxidative stress induced by hyperbaric oxygenation (HBO). Under physiological conditions, SkQ1 administration (50 nmol/kg, 5 days) did not affect the CASP3 gene expression and caspase-3-like activity in the cortical cells, as well as caspase-3-like activity in brain mitochondria, but caused a moderate decrease in the content of primary products of lipid peroxidation (LPO) and an increase in the reduced glutathione (GSH) level. HBO-induced oxidative stress (0.5 MPa, 90 min) was accompanied by significant upregulation of CASP3 mRNA and caspase-3-like activity in the cerebral cortex, activation of the mitochondrial enzyme with simultaneous decrease in the GSH content, increase in the glutathione reductase activity, and stimulation of LPO. Administration of SkQ1 before the HBO session maintained the basal levels of the CASP3 gene expression and enzyme activity in the cerebral cortex cells and led to the normalization of caspase-3-like activity and redox parameters in brain mitochondria. We hypothesize that SkQ1 protects brain cells from the HBO-induced oxidative stress due to its antioxidant activity and stimulation of antiapoptotic mechanisms.  相似文献   

19.
Effects of ischemia on the content of a ulinastatin (UT)-like substance in the murine cerebral cortex and hippocampus were studied. At 24 h post-ischemia, a significant (p < 0.05) decrease in the content of UT-like substance in the hippocampus but not the cerebral cortex and a concurrent increase in the activity of -calpain were observed. In in vitro experiments, a decrease was registered in the content of UT-like substance in the hippocampus in the presence of calcium. This decrease was inhibited by both EDTA and calpastatin treatments. These results implicate the destruction of UT-like substance by -calpain in the ischemic hippocampus.  相似文献   

20.

Background

Obesity is associated with various progressive age-related diseases, including neurological disorders. However, underlying molecular basis for increased risk of neurodegeneration in obesity is unknown. A suitable animal model would immensely help in understanding the obesity-linked neurological problems.

Methods

A spontaneously developed obese rat (WNIN/Ob) which is highly vulnerable for a variety of degenerative diseases was isolated from the existing WNIN stock rats. Ultrastructure of neurons in the cerebral cortex of 12-month old obese rats was evaluated by transmission electron microscopy. qRT-PCR and immunoblotting of ubiquitin C-terminal hydrolases (UCHs), ubiquitin, proteasomal sub-units, markers of ER stress and apoptosis were performed in the cerebral cortex. Proteasome activity was assayed by fluorometric method. Immunohistochemistry was performed for mediators of apoptosis, which was further confirmed by TUNEL assay. These investigations were also carried in high-fat diet-induced obese rat model.

Results

Neurons in the cerebral cortex of 12-month obese rats showed swollen mitochondria, disrupted ER and degenerating axons, nucleus and finally neurons. Results showed altered UPS, existence of ER stress, up-regulation of apoptotic markers and apoptosis in the cerebral cortex of obese rats. It appears that UCHL-1 mediated apoptosis through stabilizing p53 might play a role in neuronal cell death in obese rat. Similar changes were observed in the brain of diet-induced obese WNIN rats.

Conclusion

Altered UPS could be one of the underlying mechanisms for the neuronal cell death in obese conditions.

General significance

This is the first report to highlight the role of altered UPS in neurodegeneration due to obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号