首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An experiment was designed to evaluate the role of N and C reserves on regrowth of Lolium perenne cv. Bravo following defoliation. By using two nitrogen fertilization levels together with three photoperiodic conditions, plants with variable contents of water-soluble carbohydrates (43-216 mg g-1 DW in stubble) and contrasting amounts of nitrogen (7-49 mg g-1 DW) were obtained. Plants were severely defoliated and regrowth was followed for 28 d under the same environmental conditions. The yield of leaf dry matter at the end of the regrowth period was not related to the initial level of carbohydrate reserves. However, levels of fructan in leaf sheaths and in elongating leaf bases strongly influenced the shoot yield during the first 2 d following defoliation. Fructan exohydrolase activity increased 2-3-fold in sheaths and 3.5-5-fold in elongation leaf bases, suggesting that not only fructans from sheaths but also fructans from immature cells may be used as substrates for growth. In contrast, no direct relationship was found between shoot production and nitrogen or soluble protein accumulation in source organs during early regrowth. A significant correlation existed with the initial amount of soluble proteins in sheaths and in elongating leaf bases after only 6 d of regrowth.  相似文献   

2.
The contribution of pre-defoliation reserves and current assimilates to leaf and root growth was examined in Lolium perenne L. during regrowth after defoliation. Differential steady-state labelling with 13C (CO2 with δ13C = -0.0281 and -0.0088) and 15N (NO3? with 1.0 and 0.368 atom percentage, i.e. δ15N = 1.742 and 0.0052, respectively) was applied for 2 weeks after defoliation. Rapidly growing tissues were isolated, i.e. the basal elongation and maturation zones of the most rapidly expanding leaves and young root tips, with a biomass turnover rate > 1 d?1. C and N weights of the elongation zone showed a transient decline. The dry matter and C concentration in fresh biomass of leaf growth zones transiently decreased by up to 25% 2 d after defoliation, while the N concentration remained constant. This ‘dilution’ of growth zone C indicates a decreased net influx of carbohydrates relative to growth-related influx of water and N in expanding cells, immediately after defoliation. Recovery of the total C and N weights of the leaf elongation zone coincided with net incorporation of currently absorbed C and N, as shown by the kinetics of δ13C and atom percentage 15N in the growth zones after defoliation. C isotope discrimination (Δ13C) in leaf growth zones was about 23‰, 1–2‰ higher than the Δ in root tips. Δ15N in the leaf and root growth zones was 10±3‰. The leaf elongation zones (at 0–0.03 m from the tiller base) and the distant root tips (about 0.2 m from the base) exhibited similar kinetics of current C and N incorporation. The amount of pre-defoliation C and N in the growth zones, expressed as a fraction of total C and N, decreased from 1.0 to 0.5 at 3 (C) and 5 (N) d after defoliation, and to 0.1 at 5 (C) and 14 (N) d after defoliation. Thus, the dependence of growth zones on current assimilate supply was significant, and stronger for C than for N. The important roles of current assimilates (as compared to pre-defoliation reserves) and ‘dilution’ of dry matter in regrowth after defoliation are discussed in relation to the method of labelling and the functional and morphological heterogeneity of shoot tissues.  相似文献   

3.
Grassland plants suffer regular defoliation, causing loss of photosynthetic activity and internal resources. Consequently, re‐foliation may be substrate‐limited. The present study was undertaken to test the hypothesis that decreased C import in leaf growth zones is (partially) compensated by: (i) mobilization of substrate within growth zones; and (ii) increased efficiency of substrate use in leaf area expansion; but (iii) that these processes depend on the C status of growth zones at defoliation. Mixtures of a C3 (Lolium perenne L.) and a C4 grass (Paspalum dilatatum Poir.) were grown at 15 °C (C3 dominance) and 23 °C (C4 dominance). Individual plants thus grew in contrasting (light and temperature) environments before being defoliated. Defoliation caused a drastic and immediate decrease in C import, but effects on leaf area expansion were buffered by biomass mobilization in the growth zone and increases in specific leaf area of produced tissue. Thus, over the first 2 d post‐defoliation, the amount of leaf area produced per unit imported C increased by 39 to 102% depending on treatment. The magnitude of these buffering responses was correlated with the concentration of water soluble carbohydrates in the growth zone at defoliation. Similar responses were observed for N, although defoliation effects were smaller and delayed relative to those on C import. This study demonstrates refoliation is sustained by short‐term mobilization of reserves within the growth zone and reduced costs of produced leaf area, but that these mechanisms depend on growth zone C status at defoliation.  相似文献   

4.
The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30–60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance. Received: 16 June 2000 / Accepted: 17 October 2000  相似文献   

5.
Young plants of a rhizomatous grass Calamagrostis epigejos (L.) Roth were grown from seed in nutrient solutions containing nitrogen in concentrations 0.1, 1.0, and 10 mM. After six weeks of cultivation the plants were defoliated and changes in growth parameters and in content of storage compounds were measured in the course of regrowth under highly reduced nitrogen availability. Plants grown at higher nitrogen supply before defoliation had higher amount of all types of nitrogen storage compounds (nitrates, free amino acids, soluble proteins), which was beneficial for their regrowth rate, in spite of lower content of storage saccharides. Amino acids and soluble proteins from roots and stubble bases were the most important sources of storage compounds for regrowth of the shoot. Faster growth of plants with higher N content was mediated by greater leaf area expansion and greater number of leaves. In plants with lower contents of N compounds number of green leaves decreased after defoliation significantly and senescing leaves presumably served as N source for other growing organs. Results suggest that internal N reserves can support regrowth of plants after defoliation even under fluctuating external N availability. Faster regrowth of C. epigejos with more reserves was mediated mainly by changes in plant morphogenesis.  相似文献   

6.
The effect of defoliation on the deposition of carbon (C) and nitrogen (N) and the contribution of reserves and current assimilates to the use of C and N in expanding leaf tissue of severely defoliated perennial ryegrass (Lolium perenne L.) was assessed with a new material element approach. This included 13C/12C-and 15N/14N-steady-state labelling of all post-defoliation assimilated C and N, analysis of tissue expansion and displacement in the growth zone, and investigation of the spatial and temporal changes in substrate and label incorporation in the expanding elements prior to and after defoliation. The relationship between elemental expansion and C deposition was not altered by defoliation, but total C deposition in the growth zone was decreased due to decreased expansion of tissue at advanced developmental stages and a shortening of the growth zone. The N deposition per unit expansion was increased following defoliation, suggesting that N supply did not limit expansion. Transition from reserve- to current assimilation-derived growth was rapid (<1 d for carbohydrates and approximately 2 d for N), more rapid than suggested by label incorporation in growth zone biomass. The N deposition was highest near the leaf base, where cell division rates are greatest, whereas carbohydrate deposition was highest near the location of most active cell expansion. The contribution of reserve-derived relative to current assimilation-derived carbohydrates (or N) to deposition was very similar for elements at different stages of expansion  相似文献   

7.
Examination of the relationship between photosynthesis and growth of a dominant white oak (Quercus alba L.) tree has shown that most growth processes were either completed or well underway before the establishment of significant positive rates of net photosynthesis. Growth was initiated first in the root system (March 3), followed by stem cambial growth (March 26) and later by flower, leaf, and branch growth (April 10). During the period of rapid leaf and branch growth, root and cambial growth ceased and then resumed as the leaves approached maturity. The rapid rate of leaf maturation, the early appearance of positive rates of net photosynthesis in leaves (15% of final size) and the CO2-refixing capability of elongating branch tissue reduced the period of time that this white oak tree was dependent on stored reserves. Lower temperature optima and compensation points in developing leaves and stems indicated that the growth-temperature response was optimized for the lower seasonal temperatures observed during the spring. This temperature adaptation further reduced the time that this tree was dependent on stored reserves.  相似文献   

8.
Infra-red gas analysis and a quantitative radiocarbon tracertechnique were used to measure photosynthesis, and the export,distribution and utilization of current assimilate in the regrowthof leaf tissue and the growth of stem and root of partially-defoliateduniculm barley plants. After defoliation, which removed allleaf tissue above the ligule of leaf 3, the rate of photosynthesisof the remaining two older leaves fell to 90–95 per centof that of control leaves, but they exported more of their assimilatedcarbon to meristems elsewhere in the plant during the first48 h after the defoliation. The level of export from the twoolder leaves began to decline when new leaf tissue regrew fromthe shoot apex, and fell below that of the control leaves 4days after defoliation. The two older leaves supplied the assimilateused in the regrowth of new leaf tissue immediately after defoliation:previously they had exported most of their assimilate to root.There was no evidence that ‘reserves’ were mobilizedto meet the needs of regrowth at leaf meristems or, indeed,of the growth in stem and root; current photosynthesis suppliedsufficient assimilate to account for all observed growth. Ingeneral, the plants responded to defoliation with a rapid andmarked re-allocation of assimilate from root to leaf meristems,with the result that root growth was severely retarded but newleaf tissue grew at 70–100 per cent of the rate observedin control plants.  相似文献   

9.
Growth, morphology and leaf characteristics were assessed in late spring following simulated autumnal defoliation in second-year saplings of three Chinese subtropical evergreen tree species.Castanopsis fargesii showed strong compensatory growth in terms of plant biomass after removal of both 50 and 75% of leaf biomass and slight compensatory growth after 90% defoliation. DefoliatedC. fargesii saplings had more leaves per unit shoot length than non-defoliated saplings. New leaves on defoliated plants were smaller and had higher per area nitrogen content than new leaves on non-defoliated plants.Pinus massoniana andElaeocarpus japonicus showed strong and no compensatory growth, respectively, after 50% defoliation. The strong compensatory growth inP. massoniana andC. fargesii may partly explain why these species predominate in the early and late successional phases of evergreen broad-leaved forests  相似文献   

10.
The role of fructans from leaf sheaths for the refoliation of Lolium perenne after severe defoliation was assessed by following the fate of (13)C-fructose supplied to leaf sheaths at the time of defoliation. At the end of the 4 h labelling period on defoliated plants, 77% of the (13)C incorporated was still located in leaf sheaths. Only 4% and 0.9% were, respectively, allocated to stem and roots, while 18% was imported by the growing leaves where (13)C was allocated first to the proximal part of the leaf growth zone (0-10 mm). In all tissues, the most highly (13)C-labelled carbohydrates was not fructose but sucrose. In leaf sheaths, (13)C-loliose was produced. In the leaf growth zone (0-20 mm), fructans were simultanously synthesized from (13)C entering the leaves and degraded. The export of (13)C from leaf sheaths continued during the first day of regrowth but stopped afterwards. There was no net loss of C from (13)C-fructose over the first 2 d of regrowth. The role of fructans and loliose is discussed as well as the physiological mechanisms contributing to defoliation tolerance in L. perenne.  相似文献   

11.
Summary Net photosynthesis (PN), root respiration (RR), and regrowth of Bouteloua gracilis (H.B.K.) Lag. were examined in the laboratory over a 10-day period following clipping to a 4-cm height to simulate grazing by large herbivores. Net photosynthesis rates of tissue remaining immediately following defoliation were only about 40% as great as preclipping rates. Three days after clipping, PN rates of defoliated plants had increased to values about 21% greater (per unit leaf area) than those of unclipped controls and remained at that level through Day 10. No statistically significant changes in RR occurred following defoliation. Biomass of unclipped plants nearly doubled during the 10-day study period, while that of defoliated plants increased 67%. Over half the new growth of defoliated plants was allocated to new leaf blades and only 18% to new roots, while only 33% of the new growth of control plants was allocated to new leaf blades but 29% went to new roots. As a consequence of increased PN rates and increased carbon allocation to synthesis of additional photosynthetic tissue following defoliation, net CO2 uptake per plant increased from 9% to 80% of that of the controls from Day 0 through Day 10.  相似文献   

12.
Submergence stimulates elongation of the leaves of Rumex palustris and under laboratory conditions the maximum final leaf length (of plants up to 7 weeks old) was obtained within a 9 day period. This elongation response, mainly determined by petiole elongation, depends on the availability of storage compounds and developmental stage of a leaf. A starch accumulating tap root and mature leaves and petioles were found to supply elongating leaves with substrates for polysaccharide synthesis in expanding cell walls. Changes in the composition of cell wall polysaccharides of elongated petioles suggest a substantial cell wall metabolism during cell extension. Reduced starch levels or removal of mature leaves caused a substantial limitation of submerged leaf growth. From the 5th leaf onward enough reserves were available to perform submerged leaf growth from early developmental stages. Very young petioles had a limited capacity to elongate. In slightly older petioles submergence resulted in the longest final leaf lengths and these values gradually decreased when submergence was started at more mature developmental stages. Submerged leaf growth is mainly a matter of petiole elongation in which cell elongation has a concurrent synthesis of xylem elements in the vascular tissue. Mature petioles still elongated (when submerged) by cell and tissue elongation only: the annular tracheary elements stretched enabling up to 70% petiole elongation.  相似文献   

13.
14.
Vegetative and chemical responses to simulated leaf browsing during the growth season, and their subsequent effect on herbivory, were studied on Combretum apiculatum Sonder (Combretaceae) in Botswana. Treatments (50% and 100% leaf and shoot apex removal) were performed just before the shoot growth curve levelled out, and responses recorded 3 months later, just before leaf fall. Compared to controls, defoliation treatments, removing apical dominance, reduced growth in tree height and increased shoot mortality, although the production of lateral shoots increased. At the end of the trial, there was no difference in total length of annual shoots between treatment groups. Significant refoliation occurred only after 100% defoliation. Refoliated leaves were smaller and the 100% defoliated trees had a lower final leaf biomass. Total leaf biomass production was, however, equal for all treatment groups. Refoliated leaves contained higher levels of N, lower levels of acid-detergent fibre (ADF) and total phenolics, and showed a trend towards lower levels of condensed tannins, compared to leaves on control trees. Such chemical changes may be due to either carbon stress or to younger physiological age of new leaves. In spite of the observed potential increase in food quality, we found no evidence of increased levels of insect or ungulate herbivory on refoliated leaves, which, at least for insect herbivory, may be explained by the reduction in temporal availability of leaves. We conclude that the single severe defoliation was not detrimental to C. apiculatum in the short-term, although the resource loss and induced compensatory growth may produce negative effects during subsequent growth seasons.  相似文献   

15.
Asymmetries in root growth in response to localized aerial defoliation were examined in Coleus rehneltianus (Lamiaceae). We confirmed that assimilate transport was sectorial by examining the distribution of 14C-labeled carbohydrates following a 24-h chase period. Integrated physiological units (IPUs), or sectors, extended from the leaves into the roots, and this was reflected in the differential growth of roots following artificial defoliation of part of the leaf canopy. When defoliation was localized within leaves or leaf halves within sectors, roots grew asymmetrically, with decreased root growth in defoliated sectors. Three root populations were identified by their location and growth responses: stem side, stem corner, and bottom side roots, and asymmetric growth was observed in all three populations. Only the growth of stem corner roots, which made up 35–90% of dry mass of the total root population, was influenced by the pattern of aerial defoliation. In contrast, asymmetries in the growth of the other two root populations appeared to reflect the distribution of leaf biomass prior to defoliation.  相似文献   

16.

Aims

Regrowth of dual-purpose canola after grazing is important for commercial success and the aim of this research was to investigate the effects of defoliation on the development, growth, photosynthesis and allocation of carbohydrates.

Methods

We conducted two pot experiments in which defoliation was conducted at multiple intensities with scissors. Experiment 1 determined changes in flowering date due to defoliation while Experiment 2 investigated the effects of defoliation on growth, photosynthesis and allocation of carbohydrates in canola.

Results

Time to the appearance of the first flower was delayed by up to 9 days after the removal of all leaves at the start of stem elongation (GS30), and up to 19 days if the elongating bud was also removed. Stem growth rate decreased by 56–86 % due to defoliation and tap roots did not increase in mass when plants were completely defoliated. Leaf area continued to expand at the same rate as in un-defoliated plants. The new leaf area established per gram of regrowth biomass over 20 days was 158 cm2.g-1 for the complete defoliation treatments compared with 27 cm2.g?1 for the half-defoliated treatment and 13 cm2.g?1 for the un-defoliated treatment. Despite a reduction in total biomass of up to 60 %, the proportion of dry matter partitioned to the leaves was 18 % for all treatments within 20 days after defoliation. Total non-structural carbohydrate levels were reduced rapidly in the stem by day two (predominately sucrose) and the tap root by day four (predominately starch) after defoliation and did not recover to match un-defoliated plant levels within 20 days. Residual leaves on defoliated plants maintained photosynthetic rate compared with the same leaf cohorts on un-defoliated plants in which photosynthetic rate decreased to 39 % by day 12.

Conclusions

The rapid recovery of leaf area in defoliated canola was facilitated by the sustained high photosynthetic rate in remaining leaves, rapid mobilisation of stored sugars (stem) and starch (root), and a cessation of root and stem growth.  相似文献   

17.
The fourth fully expanded leaf on the main stolon of white cloverplants was exposed to 14CO2. Thereafter, quantitative and fractionalanalysis of the partitioning, storage and remobilization afterdefoliation of the 14C labelled assimilate was sequentiallyconducted over a 2- to 3-week period. In undefoliated plants, most 14C reached its final destinationwithin 24 h of feeding. Forty percent of assimilated 14C waslost through respiration, while the rest was exported, predominantlyto meristems, but also to roots, stolons and leaves. The 14Cinitially translocated to meristems was subsequently recoveredin stolon and leaf tissue as the plants matured. Approximately 10% of assimilated 14C was invested into long-termstorage in roots and stolons. These reserves were remobilizedafter both partial and total defoliation, and a portion of theremobilized 14C was incorporated into new growth, Partly defoliatedplants regrew more rapidly than totally defoliated plants, butmore 14C reserve depletion took place in the totally defoliatedtreatment. Reserve depletion took place from both stolons androots, but stolon reserves were preferentially utilized. Bothhigh and low molecular weight storage compounds were involved. Trifolium repens, white clover, assimilate partitioning, storage, remobilization, defoliation  相似文献   

18.
The variations of δ13C in leaf metabolites (lipids, organic acids, starch and soluble sugars), leaf organic matter and CO2 respired in the dark from leaves of Nicotiana sylvestris and Helianthus annuus were investigated during a progressive drought. Under well‐watered conditions, CO2 respired in the dark was 13C‐enriched compared to sucrose by about 4‰ in N. sylvestris and by about 3‰ and 6‰ in two different sets of experiments in H. annuus plants. In a previous work on cotyledonary leaves of Phaseolus vulgaris, we observed a constant 13C‐enrichment by about 6‰ in respired CO2 compared to sucrose, suggesting a constant fractionation during dark respiration, whatever the leaf age and relative water content. In contrast, the 13C‐enrichment in respired CO2 increased in dehydrated N. sylvestris and decreased in dehydrated H. annuus in comparison with control plants. We conclude that (i) carbon isotope fractionation during dark respiration is a widespread phenomenon occurring in C3 plants, but that (ii) this fractionation is not constant and varies among species and (iii) it also varies with environmental conditions (water deficit in the present work) but differently among species. We also conclude that (iv) a discrimination during dark respiration processes occurred, releasing CO2 enriched in 13C compared to several major leaf reserves (carbohydrates, lipids and organic acids) and whole leaf organic matter.  相似文献   

19.
Explants of guayule,Parthenium argentatum Gray, were treated with concentrations of ethephon varying from 0.5 to 10gl -1 for six days. The cut ends of the shoots were immersed in the solutions and allowed to stand so that the ethylene-releasing agent entered the explant via the transpiration stream. With higher concentrations of ethephon, defoliation of the explants commenced after one day and was 100% effective after six days. Lower concentrations were less effective. Examination of the petiole bases of treated explants at the light microscope level revealed enhanced development of abscission layers and hydrolytic degradation of the tissue immediately distal to these layers. This led to separation of the leaf which had become senescent. Food reserves appeared to have been mobilised from the senescent leaves. Histochemical staining and ultrastructural observations indicated loss of insoluble polysaccharides and cellulose from the induced separation layer. Pectic substances were lost to a lesser extent.The financial support of Cooperative Scientific Programmes of the C.S.I.R. and technical assistance of the Electron Microscope Unit of the University of Natal, Pietermaritzburg is gratefully acknowledged.  相似文献   

20.
Among plants grown under enriched atmospheric CO2, root:shoot balance (RSB) theory predicts a proportionately greater allocation of assimilate to roots than among ambient‐grown plants. Conversely, defoliation, which decreases the plant's capacity to assimilate carbon, is predicted to increase allocation to shoot. We tested these RSB predictions, and whether responses to CO2 enrichment were modified by defoliation, using Heterotheca subaxillaris, an annual plant native to south‐eastern USA. Plants were grown under near‐ambient (400 μmol mol?1) and enriched (700 μmol mol?1) levels of atmospheric CO2. Defoliation consisted of the weekly removal of 25% of each new fully expanded, but not previously defoliated, leaf from either rosette or bolted plants. In addition to dry mass measurements of leaves, stems, and roots, Kjeldahl N, protein, starch and soluble sugars were analysed in these plant components to test the hypothesis that changes in C:N uptake ratio drive shifts in root:shoot ratio. Young, rapidly growing CO2‐enriched plants conformed to the predictions of RSB, with higher root:shoot ratio than ambient‐grown plants (P < 0.02), whereas older, slower growing plants did not show a CO2 effect on root:shoot ratio. Defoliation resulted in smaller plants, among which both root and shoot biomass were reduced, irrespective of CO2 treatment (P < 0.03). However, H. subaxillaris plants were able to compensate for leaf area removal through flexible shoot allocation to more leaves vs. stem (P < 0.01). Increased carbon availability through CO2 enrichment did not enhance the response to defoliation, apparently because of complete growth compensation for defoliation, even under ambient conditions. CO2‐enriched plants had higher rates of photosynthesis (P < 0.0001), but this did not translate into increased final biomass accumulation. On the other hand, earlier and more abundant yield of flower biomass was an important consequence of growth under CO2 enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号