首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following nest destruction, the laying of physiologically committed eggs (eggs that are ovulated, yolked, and making their way through the oviduct) in the nests of other birds is considered a viable pathway for the evolution of obligate interspecific brood parasitism. While intraspecific brood parasitism in response to nest predation has been experimentally demonstrated, this pathway has yet to be evaluated in an interspecific context. We studied patterns of egg laying following experimental nest destruction in captive zebra finches, Taeniopygia guttata, a frequent intraspecific brood parasite. We found that zebra finches laid physiologically committed eggs indiscriminately between nests containing conspecific eggs and nests containing heterospecific eggs (of Bengalese finches, Lonchura striata vars. domestica), despite the con‐ and heterospecific eggs differing in both size and coloration. This is the first experimental evidence that nest destruction may provide a pathway for the evolution of interspecific brood parasitism in birds.  相似文献   

2.
In 1965, Hamilton and Orians (HO) hypothesized that the starting point for the evolution of obligate interspecific brood parasitism in birds was the facultative laying of physiologically committed eggs in neighbouring active nests of con‐ and heterospecifics, following predation of a bird’s own nest during the laying stage. We tested this prediction of the HO hypothesis by using captive pairs of zebra finches (Taeniopygia guttata), a species with evidence for intraspecific parasitism both in the wild and in captivity. As predicted, in response to experimental nest removal, subjects laid eggs parasitically in simulated active conspecific nests above chance levels. Across subsequent trials, we detected both repeatability and directional change in laying patterns, with some subjects switching from parasitism to depositing eggs in the empty nest. Taken together, these results support the assumptions and predictions of the HO hypothesis, and indicate that the zebra finch is a potential model species for future behavioural and genetic studies in captive brood parasite research.  相似文献   

3.
Brood parasitism and nest predation are major causes of reproductive failure for many bird species nesting in fragmented landscapes. While brood parasites and predators may act independently, they could also interact if brood parasites increase the likelihood that predators detect nests. In this study, we examined the interaction between cowbird parasitism and nest predation in a 10 year study on 466 American redstart Setophaga ruticilla nests in central Alberta, Canada. We used advanced nest survival models to examine the support for three mechanisms that might lead to a positive correlation between brood parasitism and nest predation: 1) the presence of a cowbird nestling might increase the detection of the nest by predators, 2) nests with lower cover are more likely to be detected by both cowbirds and predators, and 3) cowbirds and predators may co-occur in landscapes of similar structure. Twelve percent of nests were parasitized and those nests had a 16–19% higher rate of failure due to predators compared to unparasitized nests. Daily nest predation rates increased during the nestling stage for both groups, but more strongly for parasitized nests. Loud begging by the cowbird nestling and/or higher parental feeding rates for the cowbird may have increased nest detectability to predators. Brood parasitism and nest predation were also positively related to forest cover, indicating landscape level effects were influential. Most nest predators were forest species and we suspect cowbirds responded positively to forest cover because of the increased abundance of songbird hosts. Nest-site features had less of an impact on nest predation or brood parasitism, although nests with higher overhead cover were less susceptible to predators. Our study shows how multiple mechanisms, particularly the behavioral effects of the brood parasite nestling and landscape structure, can lead to a positive relationship between nest predation and brood parasitism.  相似文献   

4.
Summary. The nesting behavior of the euglossine bee Euglossa townsendi was studied on the campus of the University of São Paulo-Ribeirão Preto, SP, Brazil, from January 1994 to December 1999, using artificial nesting substrate and observation boxes. Twenty-one nests were founded during the study period, with the highest frequencies of nesting occurring during the hot, wet season. Each nest was founded by a single female and, after the completion of the last cell, she spent most of her time in the nest. The males left the nest immediately after emergence and did not return. Some females left the nest within a few days of eclosing, while others stayed in their natal nests and began to reactivate them. Reactivations were performed by a single female, by one or more females in the presence of the mother, by more than one female in the absence of the mother, and by more than one female in the presence of females that participated in the prior reactivation. According to behavior, the females were classified as forager/egg-laying and egg-laying females. The oviposition by egg-laying females was always preceded by oophagy. All of the forager/egg-laying and egg-laying females that were dissected had been inseminated. The behavior displayed by egg-laying females is characteristic of brood parasitism and fits the parental parasitism hypothesis developed as an alternative pathway by which insect sociality could have arisen. The behaviors displayed by E. townsendi, together with those reported for Euglossa cordata, show that both species have bionomic traits that resemble the conditions suggested as precursors of the origin of eusociality.Received 12 June 2003; revised 6 April 2004; accepted 22 April 2004.  相似文献   

5.
This paper investigates the effect of brood parasitism in a dung beetle assemblage in an arid region of Spain. The study was conducted during the spring season (March-May 1994-1998) using mesh cylinders buried into the ground, filled with sand and with sheep dung on top. We quantified the proportion of nests containing larvae of parasitic beetles and their effect on host larvae survival. Experiments on the effect of parasitic larvae on host-larvae survival were conducted by placing scarab brood masses (raised from captive scarabs in the laboratory) in containers with and without aphodiid larvae. During the spring, dung desiccation is rapid, preventing aphodiids nesting in the dung, and forcing these species to adopt brood parasitism as a nesting strategy. Parasitic aphodiids were found in 12-47% of scarab nests of three species. The incidence of brood parasitization was positively related with the number of brood masses contained in the nests, being also higher in the most abundant species. Field data and experiments showed that brood parasites significantly reduced host larvae survival from 74.8% in non-parasitized nests to 8.8% in parasitized nests. Because different rates of nest parasitization and mortality were caused by parasites, brood parasitism had a differential effect on different host species. Thus, brood parasitism constitutes an important mortality factor reducing the reproductive success of the host species and potentially affecting the beetle abundance in the area.  相似文献   

6.
ABSTRACT Nest‐site selection and nest defense are strategies for reducing the costs of brood parasitism and nest predation, two selective forces that can influence avian nesting success and fitness. During 2001–2002, we analyzed the effect of nest‐site characteristics, nesting pattern, and parental activity on nest predation and brood parasitism by cowbirds (Molothrus spp.) in a population of Brown‐and‐yellow Marshbirds (Pseudoleistes virescens) in the Buenos Aires province, Argentina. We examined the possible effects of nest detectability, nest accessibility, and nest defense on rates of parasitism and nest predation. We also compared rates of parasitism and nest predation and nest survival time of marshbird nests during the egg stage (active nests) with those of the same nests artificially baited with passerine eggs after young fledged or nests failed (experimental nests). Most nests (45 of 48, or 94%) found during the building or laying stages were parasitized, and 79% suffered at least one egg‐predation event. Cowbirds were responsible for most egg predation, with 82 of 107 (77%) egg‐predation events corresponding to eggs punctured by cowbirds. Nests built in thistles had higher rates of parasitism and egg predation than nests in other plant, probably because cowbirds were most active in the area where thistles were almost the only available nesting substrate. Parasitism rates also tended to increase as the distance to conspecific nests increased, possibly due to cooperative mobbing and parental defense by marshbirds. The proportion of nests discovered by cowbirds was higher for active (95%) than for experimental (29%) nests, suggesting that cowbirds used host parental activity to locate nests. Despite active nest defense, parental activity did not affect either predation rates or nest‐survival time. Thus, although nest defense by Brown‐and‐yellow Marshbirds appears to be based on cooperative group defense, such behavior did not reduce the impact of brood parasites and predators.  相似文献   

7.
There are at least four main hypotheses that may explain how the evolution of host selection by avian brood parasites could be linked to nest predation among their potential hosts. First, selection may have favoured parasite phenotypes discriminating among hosts on the basis of expected nest failure. Second, parasitized nests may be more easily detected by predators and extra costs of parasitism may accelerate the evolution of host defences. Third, selection may have favoured predator phenotypes avoiding parasitized nests because parasitism enhances nest defence. Fourth, female brood parasites may directly or indirectly induce host nesting failures in order to enhance future laying opportunities. We collected data on brood parasitism and nest failure due to predation to test these hypotheses in a comparative approach using North American passerines and their brood parasite, the brown-headed cowbird Molothrus ater. Under the hypotheses 1 or 3 we predicted brood parasitism to be negatively associated with nest predation across species, whereas this relation is expected to be positive if hypotheses 2 or 4 are true. We demonstrate that independent of host suitability, nest location, habitat type, length of the nestling period, body mass and similarity among species due to common ancestry, species experiencing relatively high levels of nest predation suffered lower levels of cowbird parasitism. Our results suggest a previously ignored role for nest predation suffered by hosts on the dynamics of the coevolutionary relationships between hosts and avian brood parasites. Co-ordinating editor: Dr. F. Stuefer  相似文献   

8.
ABSTRACT.   Swallows and martins are infrequent hosts of the generalist brood parasite Shiny Cowbird ( Molothrus bonariensis ). We monitored 50 nesting attempts by White-rumped Swallows ( Tachycineta leucorrhoa ) over a two-year period in Argentina and detected low rates of brood parasitism (three nests, or 6%). Of the three nests parasitized, cowbirds ( N = 1 per nest) successfully fledged from two. Eight of 13 swallow eggs in these three nests were punctured by cowbirds, and all but one swallow nesting starved at the two parasitized nests. At least two factors may contribute to the low frequency of parasitism of White-rumped Swallows by Shiny Cowbirds, including the inability of the larger cowbirds to enter some nest cavities and the aggressive nest defense behavior of adult swallows.  相似文献   

9.
Jeremy  Field 《Journal of Zoology》1992,228(2):341-350
The nesting behaviour of individually marked female pompilid wasps, Anoplius viaticus , was observed at a Breckland heath site with particular emphasis on intraspecific parasitism and nest defence. Prey was stolen from conspecifics while it was being carried to the nest site, and while it was left unattended during nest construction. Females also appeared to brood parasitize each other's completed nests. Parasitism appeared to be opportunistic. Brood parasitism may be a tactic by which time-limited females can increase their fecundity. By placing prey in vegetation tufts during nest construction, females may reduce the risk of prey theft. An individual female's successive unicellular nests were clustered and therefore easier to defend, in many ways resembling a multicellular nest. Females defended their clusters vigorously, visiting them every few minutes during foraging and expelling conspecifics from the vicinity. This type of nest defence may be costly, and has rarely been observed in solitary wasps.  相似文献   

10.
《Animal behaviour》1995,50(5):1309-1316
Three nesting behaviour patterns are documented in the plethodontid salamander Hemidactylium scutatum. A female may lay eggs (1) in a solitary nest and brood them, (2) in a joint nest and brood them as well as eggs of other females, or (3) in a joint nest that is brooded by another female. The hypothesis that population density was positively associated with joint nesting was tested by following two populations for 5 years and by experimentally manipulating the population density of nesting females in artificial habitats for the latter 2 years. The proportion of joint nests did not vary with density, although joint nests tended to contain eggs of more females at the high population density. Joint nests were usually brooded by one female; thus, most females that laid eggs in joint nests did not brood them at high density. The reproductive success, as measured by survival of embryos, of solitary and joint nesters was equivalent. Joint nests were deserted less often, however, which decreased the probability of catastrophic mortality. The number of days of brooding was significantly positively correlated with loss of body mass of females, suggesting a cost to brooding behaviour. Joint nesting with solitary brooding is not explained by aggressive usurpation of nests or by brood parasitism.  相似文献   

11.
In recent decades, numerous studies have examined factors affecting risk of host nest parasitism in well‐known avian host–parasite systems; however, little attention has been paid to the role of host nest availability. In accordance with other studies, we found that nest visibility, reed density and timing of breeding predicted brood parasitism of Great Reed Warblers Acrocephalus arundinaceus by the Common Cuckoo Cuculus canorus. More interestingly, hosts had a greater chance of escaping brood parasitism if nesting was synchronized. Cuckoo nest searching was governed primarily by nest visibility at high host‐nest density. However, even well‐concealed nests were likely to be parasitized during periods when just a few hosts were laying eggs, suggesting that Cuckoos adjust their nest‐searching strategy in relation to the availability of host nests. Our results demonstrate that host vulnerability to brood parasitism varies temporally and that Cuckoo females are able to optimize their nest‐searching strategy. Moreover, our study indicated that Cuckoos always manage to find at least some nests to parasitize. Thus, in this case, the co‐evolutionary arms race should take place mainly in the form of parasitic egg rejection rather than via frontline pre‐parasitism defence.  相似文献   

12.
Conspecific brood parasitism allows females to exploit other females' nests and enhance their reproductive output. Here, we test a recent theoretical model of how host females gain inclusive fitness from brood parasitism. High levels of relatedness between host and parasitizer can be maintained either by: (a) kin recognizing and parasitizing each other as a form of cooperative breeding or (b) natal philopatry and nest site fidelity facilitating the formation of kin groups, thereby increasing the probability of parasitism between relatives nesting in close proximity. To address these two hypotheses we genotyped feathers and hatch membranes of common eiders (Somateria mollissima) from western Hudson Bay, Canada, using a noninvasive sampling methodology. We found that most instances of brood parasitism do result in inclusive fitness gains. Furthermore, females with failed nests moved an average of 492 m from their previous year's nest site, while successful females only moved an average of 13 m. Therefore, we observed host–parasite relatedness can occur at levels higher than would be expected by chance even in the absence of kin grouping, suggesting that closely related females nesting near one another is not essential to maintain high host–parasitizer relatedness. In addition, kin grouping is only a transient phenomenon that cannot occur every year due to the propensity for females of failed nests to nest farther away from their nest site in subsequent years than females with successful nests, which provides support for kin recognition as a more likely mechanism to maintain high host–parasitizer relatedness over time.  相似文献   

13.
Ecological constraints such as resource limitation, unfavourable weather conditions, and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. In the present study, we assess the fitness consequences of these three ecological factors on reproductive success of solitary nests and social colonies in the socially polymorphic small carpenter bee, Ceratina australensis, based on 982 nests collected over four reproductive periods. Nest site limitation was predicted to decrease opportunities for independent nest initiation and increase the frequency of social nesting. Nest sites were not limiting in this species and the frequency of social nesting was consistent across the four brood‐rearing periods studied. Unfavourable weather was predicted to lower the frequency of female dispersal from their natal nests and to limit the brood‐rearing season; this would increase the frequency and fitness of social colonies. Daily temperature and precipitation accumulation varied between seasons but were not correlated with reproductive success in this bee. Increased parasite pressure is predicted to increase the frequency and fitness of social colonies because solitary bees must leave the nest unattended during foraging bouts and are less able to defend the nest against parasites. Severe parasitism by a chalcid wasp (Eurytoma sp.) resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. The high frequency of solitary nests suggests that this is the optimal strategy. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure, and we suggest that social nesting represents a form of bet‐hedging against unpredictable fluctuations in parasite number. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 57–67.  相似文献   

14.
A field study of the breeding ecology of the Japanese aucha perch, Siniperca kawamebari, and brood parasitism by the Japanese minnow, Pungtungia herzi, on nests of the perch was carried out from 1989 to 1991. Observations of perch nests under natural conditions in 1990 showed that brood parasitism by the minnow was concentrated on host nests in which nest owners had just begun their nesting cycle. When spawned in a perch nest with recently spawned perch eggs, parasite eggs always hatched earlier than host eggs. An experiment with imitation perch eggs in 1991 confirmed that changing colour of host eggs was the cue for the parasites to distinguish between different developmental stages of host eggs. Parasite eggs rapidly disappeared without guarding by a host male (Baba et al. 1990). This loss was caused by predation by fishes. Parasite fry left the nest immediately after hatching, so parasite eggs spawned in a host nest in an early stage should be well guarded until they hatch. In the field, minnows deposited their eggs in perch nests which had larger numbers of newly spawned perch eggs. Since the perch males always deserted their nests when their own eggs disappeared, the parasite's choice of host nests with larger numbers of host eggs may ensure survival of the parasite eggs. The timing of egg deposition and choice of host nest by the minnow appear to be adaptive in terms of brood parasitism on nests of the perch.  相似文献   

15.
1. Parasitism can be an important source of mortality for insect populations; however, we know little about the factors influencing vulnerability of wild bees to parasites. Mason bees (genus Osmia; Hymenoptera: Megachilidae) are important pollinators of crops and wild plants and are vulnerable to attack by brood parasites. High nest densities may increase rates of brood parasitism by attracting disproportionate numbers of parasites. 2. Three years of field observations from multiple sites were analysed to assess whether mason bee brood parasitism increased with host density. Mason bees were allowed to nest in artificial nesting blocks and establish natural variation in nesting density. Nest cells constructed by bees were checked for the presence of parasite eggs. 3. Parasitism of nest cells strongly increased with the number of actively nesting bees at a nesting block. Mason bees showed no preference for nesting in blocks that were occupied or unoccupied by other mason bees. Parasitism also increased with the number of days a nest was provisioned and decreased over the course of the season. Nest cells constructed last in a nest were significantly more parasitised than inner cells, despite being sealed against invasions. 4. These findings show positively density‐dependent parasitism in mason bees. They also suggest that bees terminate parasitised nests, causing parasitised cells to become outermost nest cells – a behaviour that may represent a defence against parasites. Our results have implications for the management of mason bees as agricultural pollinators, as cultivating them at high densities could reduce offspring survival.  相似文献   

16.
The reproductive interactions of the Shiny Cowbird Molothrus bonariensis , a brood parasite, and the Yellow-hooded Blackbird Agelaius icterocephalus , a host of the cowbird, were studied In Trinidad, West Indies. We gathered information on the breeding biology of the Shiny Cowbird and the Yellow-hooded Blackbird, the frequency of use of the host species, and the effects of brood parasitism on host breeding success. Yellow-hooded Blackbirds are polygynous for the most part; males build nests and attempt to attract females to lay in them by means of song and visual displays directed towards the nests. This behaviour probably makes it easy for cowbirds to locate breeding birds and their nests. Cowbird eggs were found in 153 of 377 (40–3 %) blackbird nests located before the nestling stage. Shiny Cowbird parasitism of the Yellow-hooded Blackbird had little negative impact on host reproductive success, whereas predation accounted for the majority of nest failures. Vigilant nest defense by male blackbirds combined with colonial breeding apparently also minimized the extent of host egg damage and removal by cowbirds, and the parasitized and unparasitized nests were equally successful at producing blackbirds. Cowbirds most frequently parasitized the first or only nesting attempts in blackbird territories, and first or only nests were also successful more frequently than subsequent nests.  相似文献   

17.
The cost of brood parasitism favors the evolution of host behaviors that reduce the risk or expense of being parasitized. Endangered Black‐capped Vireos (Vireo atricapilla) have likely coexisted with brood‐parasitic Brown‐headed Cowbirds (Molothrus ater) for more than 10,000 yr, so it is likely that they have evolved anti‐parasitic behaviors. We monitored naturally parasitized and non‐parasitized vireo nests to evaluate factors that might explain parasitism risk and nest desertion behavior and also assessed whether behaviors that occurred after being parasitized improved reproductive output. Vireos reduced the risk of parasitism by initiating breeding early and nesting farther from open grasslands and edges of woody thickets. Post‐laying, nest desertion was common (70% of parasitized nests) and increased with both the presence of at least one cowbird egg in nests and clutch reduction by cowbirds. After accounting for these cues, desertion was also more likely at nests located closer to cowbird foraging habitat and below potential cowbird vantage points. Despite its regularity, desertion did not appear to provide reproductive benefits to vireos. Instead, accepting cowbird eggs was a more effective strategy because 42% of cowbird eggs did not hatch. Furthermore, cowbird eggs were somehow ejected from at least three vireo nests. Our results suggest that Black‐capped Vireos can behave in a variety of ways that reduce the impact of brood parasitism, with frontline behaviors appearing to provide the greatest benefit. Our results also suggest that habitat management should focus on providing Black‐capped Vireos with adequate breeding habitat that provides access to safe nesting sites, and with high‐quality wintering habitat that allows vireos to migrate and initiate nesting early.  相似文献   

18.
Reproductive success of brood parasites largely depends on appropriate host selection and, although the use of inadvertent social information emitted by hosts may be of selective advantage for cuckoos, this possibility has rarely been experimentally tested. Here, we manipulated nest size and clutch colouration of magpies (Pica pica), the main host of great spotted cuckoos (Clamator glandarius). These phenotypic traits may potentially reveal information about magpie territory and/or parental quality and could hence influence the cuckoo’s choice of host nests. Experimentally reduced magpie nests suffered higher predation rate, and prevalence of cuckoo parasitism was higher in magpie nests with the densest roofs, which suggests a direct advantage for great spotted cuckoos choosing this type of magpie nest. Colouration of magpie clutches was manipulated by adding one artificial egg (blue or cream colouration) at the beginning of the egg-laying period. We found that host nests holding an experimental cream egg experienced a higher prevalence of cuckoo parasitism than those holding a blue-coloured egg. Results from these two experiments suggest that great spotted cuckoos cue on magpie nest characteristics and the appearance of eggs to decide parasitism, and confirm, for the first time, the ability of cuckoos to distinguish between eggs of different colours within the nest of their hosts. Several hypothetical scenarios explaining these results are discussed.  相似文献   

19.
Wild zebra finches sing frequently during the breeding season, but the vast majority of song is of the undirected song type that is not directed at any individual, and the function of which is obscure — it appears to be ignored by all potential recipients. It is sung close to the nest-site, has a peak in production during the egg-laying period, and diminishes thereafter. The incidence of undirected song is positively correlated with extra-pair courtship, a finding consistent with the hypothesis that it is a means of advertising availability for extra-pair matings. Typically, undirected song occurred outside the nest when the female was inside, and a positive relationship was found between the amount of singing given by the male during the 5-min interval immediately after the female entered the nest and the time she subsequently spent inside the nest. Keeping the partner inside the nest during her fertile period is an advantage to the male: it serves as a form of paternity protection against other males and it allows him opportunities to pursue his own extra-pair matings. Occupancy of the nest during laying is also a means of guarding against intraspecific brood parasitism, which was high at this colony.  相似文献   

20.
We used presentations of models to determine the effectiveness of nest defence in the Acadian Flycatcher Empidonax virescens against a nest predator (Blue Jay Cyanocitta cristata ) and a brood parasite (Brown-headed Cowbird Molothrus ater ). Principal components analysis (PCA) of four component variables of nest defence (call rate, swoop rate, closest approach and number of adults) generated a measure of overall nest defence (aggression). We determined effectiveness of defence by looking for correlations between measures of defence and measures of nest success (nest predation and brood parasitism). We also determined whether nest defence increased with clutch size, nestling age and time in the breeding season. Defence against model Brown-headed Cowbirds did not correlate with levels of parasitism, clutch size, age of young or time of breeding. There was, however, a strong, but insignificant, trend for nests with high levels of all measures of defence to suffer less from brood parasitism. Aggression, vocalization rate, closest approach and number of adults defending against models of predatory Blue Jays correlated positively with nesting success during the egg stage but not the nestling stage of the nesting cycle. Aggression, vocalization rate, closest approach correlated with clutch size and age of the brood. These results suggest that nest defence can effectively deter nest predators, but may be less effective against brood parasites. Different behavioural components of nest defence may work at different stages of the nest cycle and against different nest predators. The components of nest defence that correlated with nest success also correlated with clutch value, a result consistent with hypotheses on the evolution of nest defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号