首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to investigate the potential probiotic properties of six lactic acid bacteria (LAB) intended for human use, Lactobacillus rhamnosus ATCC 53103, Lactobacillus casei Shirota, Lactobacillus bulgaricus, L. rhamnosus LC 705, Bifidobacterium lactis Bb12, and Lactobacillus johnsonii La1, and one for animal use, Enterococcus faecium Tehobak, for use as a fish probiotic. The strains for human use were specifically chosen since they are known to be safe for human use, which is of major importance because the fish are meant for human consumption. The selection was carried out by five different methods: mucosal adhesion, mucosal penetration, inhibition of pathogen growth and adhesion, and resistance to fish bile. The adhesion abilities of the seven LAB and three fish pathogens, Vibrio anguillarum, Aeromonas salmonicida, and Flavobacterium psychrophilum, were determined to mucus from five different sites on the surface or in the gut of rainbow trout. Five of the tested LAB strains showed considerable adhesion to different fish mucus types (14 to 26% of the added bacteria). Despite their adhesive character, the LAB strains were not able to inhibit the mucus binding of A. salmonicida. Coculture experiments showed significant inhibition of growth of A. salmonicida, which was mediated by competition for nutrients rather than secretion of inhibitory substances by the probiotic bacteria as measured in spent culture liquid. All LAB except L. casei Shirota showed tolerance against fish bile. L. rhamnosus ATCC 53103 and L. bulgaricus were found to penetrate fish mucus better than other probiotic bacteria. Based on bile resistance, mucus adhesion, mucus penetration, and suppression of fish pathogen growth, L. rhamnosus ATCC 53103 and L. bulgaricus can be considered for future in vivo challenge studies in fish as a novel and safe treatment in aquaculture.  相似文献   

2.
To identify virulence-associated genes of a fish pathogen Yersinia ruckeri, we screened a total of 1056 mini-Tn5-Km2 signature-tagged mutants in rainbow trout by immersion challenge. Of 1056, 25 mutants were found survival-defective as they could not be re-isolated from fish kidney 7 days after infection. Mutated gene in F2-4 mutant, one of the 25 mutants, was homologous to uvrY that encodes UvrY response regulator of BarA–UvrY two-component system (TCS). Mutant F2-4 was significantly more sensitive (P < 0.05) to H2O2-mediated killing and was less able to infect Epithelioma papulosum cyprini cells. However, UvrY mutation did not affect survival of F2-4 mutant in the presence of non-immune fish serum and its ability to grow under iron starvation. In a time-course co-infection, mutant F2-4 had lower bacterial loads on day 1 itself, and by day 5 there was nearly a 1,000-fold difference in infection levels of the parent and mutant strains. The barA homolog of Y. ruckeri was PCR-amplified and sequence analyses identified four domains that were characteristic of hybrid histidine kinases. To conclude, the BarA–UvrY TCS contributes to the pathogenesis of Y. ruckeri in its natural host rainbow trout, possibly by regulating invasion of epithelial cells and sensitivity to oxidative stress induced by immune cells.  相似文献   

3.
The effects of dietary Ergosan on the growth performance and mucosal immunity in rainbow trout skin were investigated. 60 rainbow trout (100-110 g) were randomly assigned to 2 groups in triplicates and fed one of the experimental diet formulated with 5 g kg−1 Ergosan or control diet for 50 days. Results showed that on the 45th day of feeding trial, Ergosan supplementation significantly enhanced the growth performance compared to control group. Various enzyme activities, namely lysozyme, protease, alkaline phosphatase and esterase in treatment group were also enhanced on the 45th and 50th day. Skin mucus in Ergosan-fed fish showed the agglutination of erythrocytes while in control group, no visible agglutination was shown. In addition, skin mucus in treatment group showed strong antibacterial activity against Yersinia ruckeri. In conclusion, the major immune components of rainbow trout mucus that are involved in the non-specific immunity were enhanced by administration of Ergosan in 5 g kg−1.  相似文献   

4.

The effect of Lactococcus lactis subsp. lactis strain PTCC 1403 as a potential probiotic was investigated on the growth, hematobiochemical, immune responses, and resistance to Yersinia ruckeri infection in rainbow trout. A total of 240 fish were distributed into 12 fiberglass tanks representing four groups (× 3 replicates). Each tank was stocked with 20 fish (average initial weight: 11.81 ± 0.32 g) and fed L. lactis subsp. lactis PTCC 1403 at 0 (control, T0), 1 × 109 (T1), 2 × 109 (T2), and 3 × 109 (T3) CFU/g feed for 8 weeks. The results showed enhanced protein efficiency ratio and reduced feed conversion ratio in the fish-fed T2 diet. Further, fish-fed T2 and T3 diets showed a significantly higher survival rate than the control (p < 0.05). Trypsin, lipase, and protease activities were increased in fish-fed L. lactis subsp. lactis PTCC 1403 compared to the control (p < 0.05). Fish fed with a T2 diet showed significantly (p < 0.05) lower glucose content than other groups. The blood lysozyme activity and IgM showed significantly (p < 0.05) higher values in fish-fed T2 and T3 diets than in other groups. The antioxidative responses were increased in fish-fed T2 and T3 diets (p < 0.05). After 7 days post-Y. ruckeri challenge, the cumulative mortality rate showed the lowest value in fish fed with T1 and T2 diets, while the highest value was recorded in the control group. In conclusion, the results revealed beneficial effects of L. lactis subsp. lactis PTCC 1403 on the feed efficiency, immune response, and resistance to Y. ruckeri infection in rainbow trout.

  相似文献   

5.

In the current study, we investigated the effect of a probiotic bacterium (Lactobacillus rhamnosus ATCC 7469) microencapsulated with alginate and hi-maize starch and coated with chitosan on improving growth factors, body composition, blood chemistry, and the immune response of rainbow trout (initial weight: 18.41 ± 0.32 g). Four experimental diets were formulated to feed fish for 60 days. They were control diet without any additive (C), diet added with beads without probiotic (E), a probiotic sprayed to the diet (L.r), and encapsulated probiotic supplemented diet (E-L.r). The results indicated that feeding with E-Lr significantly improved weight gain (84.98 g) and feed conversion ratio (0.95) compared to the other groups (P < 0.05). Also, fish fed E-Lr diet had a significantly higher value of whole-body protein (17.51%), total protein in the blood (4.98 g/dL), lysozyme (30.66 U/mL), alternative complement pathway hemolytic activity (134 U/mL), superoxide dismutase (203 U/mg protein), and catalase (528.33 U/mg protein) (P < 0.05) as compared to those fed the control diet. Similarly, a higher relative expression of immune-related genes such as interleukin-1 (Il-1) and tumor necrosis factor-alpha (TNF-1α) were reported in those fed E-L.r and L.r diets respectively. Interestingly, the fish fed dietary E-L.r had a significantly lower value of lipid in the whole body (4.82%) and cholesterol in the blood (160.67%) in comparison with those fed the control diet (P < 0.05). At the end of the experiment, all groups were challenged by Yersinia ruckeri where the survival rate of rainbow trout fed dietary E-L.r (70.36%) was statistically higher than that of the others (P < 0.05). Overall, the results suggested that encapsulated probiotic Lact. rhamnosus ATCC 7469 acted better than unencapsulated probiotic and has a potential to improve growth performance, flesh quality, and the immune response of rainbow trout.

  相似文献   

6.
Gao  Xi-Yan  Liu  Ying  Miao  Li-Li  Li  Er-Wei  Sun  Guo-xiang  Liu  Ying  Liu  Zhi-Pei 《Applied microbiology and biotechnology》2017,101(9):3759-3768

The bacterium Aeromonas salmonicida is the causative agent of furunculosis, a systemic, ubiquitous disease of fish in the salmon family, characterized by high mortality and morbidity. Probiotics are a promising approach for prevention of furunculosis in aquaculture. A bacterial strain with anti-A. salmonicida properties, Bacillus velezensis V4, was isolated and the mechanisms underlying these properties were investigated. Anti-A. salmonicida compounds present in cell-free supernatant of V4 were purified and structurally identified as members of the iturin, macrolactin, and difficidin groups. The compounds contributed jointly to inhibition of A. salmonicida, and the diversity of the compounds was related to the versatility of their mode of action. Addition of the compounds to A. salmonicida cell suspensions reduced cell density. Analyses by confocal microscopy and scanning electron microscopy revealed cell membrane disruption, deletion of cellular content, and cell lysis of A. salmonicida. The V4 genome was sequenced, and gene clusters involved in synthesis of anti-Aeromonas compounds were detected and identified. A possible probiotic effect on growth performance of Oncorhynchus mykiss (rainbow trout) was investigated by addition of 0, 1, and 3 % (v/w) V4. Relative to control, mortality was reduced 27.25 % in the 1 % addition group and 81.86 % in the 3 % addition group. Feed coefficient ratio was reduced 19.49 % and weight gain ratio was increased 71.22 % in the 1 % addition group. Our findings demonstrate that V4 is an effective probiotic strain in O. mykiss and has clear potential for both control of furunculosis and growth promotion of aquaculture animals.

  相似文献   

7.
The probiotic activity of two bacterial strains, Lactobacillus casei and Lactobacillus plantarum, isolated from common carp intestines was studied using antagonistic tests in vitro against Yersinia ruckeri. Randomly assigned to triplicate groups were 450 rainbow trout (mean weight, 20 ± 3 g) fed three different diets: a commercial feed, or the same feed incorporated into either 5 × 107 CFU g?1 of L. casei or L. plantarum. After a 30‐day feeding trial, 30 fish in each group were challenged with Yersinia ruckeri by intraperitoneal injection. Growth parameters were significantly increased in both treatment groups. Immune parameters such as lysozyme activity, alternative complement activity and total immunoglobulin level were significantly higher in the L. casei group than in fish fed the control diet, while no significant differences were revealed between the L. plantarum and control groups. Mortality rates of fish fed L. casei and L. plantarum were lower than in fish fed the control diet after challenging with Y. ruckeri.  相似文献   

8.
We tracked the movements of ten small (SL = 25.5–31.0 cm) and ten large (SL = 32.0–38.5 cm) radio-tagged domestic rainbow trout (Oncorhynchus mykiss) in response to frequent pulsed releases of water in the South Fork American River (California) from July to October 2005. In week one all the small trout moved less than 1 km upstream or downstream of their release sites. Four small trout moved 1–3 km upstream or downstream of their release sites in the following 8 weeks. Seven out of ten large trout moved downstream after their release. In subsequent weeks most large trout showed smaller upstream and downstream movements, and were observed between 1 km upstream and 8 km downstream of their release sites. Our results suggest that domestic rainbow trout with SL > 25 cm are not forced downstream by daily pulsed flow increases from 5 to over 40 m3s−1.  相似文献   

9.
In seawater-acclimated rainbow trout (Oncorhynchus mykiss), base secretion into the intestine is a key component of the intestinal water absorption that offsets osmotic water loss to the marine environment. Acid–base balance is maintained by the matched excretion of acid equivalents via other routes, presumably the gill and/or kidney. The goal of the present study was to examine acid–base balance in rainbow trout upon transfer to more dilute environments, conditions under which base excretion into the intestine is predicted to fall, requiring compensatory adjustments of acid excretion at the gill and/or kidney if acid–base balance is to be maintained. Net acid excretion via the gill/kidney and rectal fluid, and blood acid–base status were monitored in seawater-acclimated rainbow trout maintained in seawater or transferred to iso-osmotic conditions. As predicted, transfer to iso-osmotic conditions significantly reduced base excretion into the rectal fluid (by ~48%). Transfer to iso-osmotic conditions also significantly reduced the excretion of titratable acidity via extra-intestinal routes from 183.4 ± 71.3 to −217.5 ± 42.7 μmol kg−1 h−1 (N = 7). At the same time, however, ammonia excretion increased significantly during iso-osmotic transfer (by ~72%) so that the apparent overall reduction in net acid excretion (from 419.7 ± 92.9 to 189.2 ± 76.5 μmol kg−1 h−1; N = 7) was not significant. Trout maintained blood acid–base status during iso-osmotic transfer, although arterial pH was significantly higher in transferred fish than in those maintained in seawater. To explore the mechanisms underlying these adjustments of acid–base regulation, the relative mRNA expression and where possible, activity of a suite of proteins involved in acid–base balance were examined in intestine, gill and kidney. At the kidney, reduced mRNA expression of carbonic anhydrase (CA; cytosolic and membrane-associated CA IV), V-type H+-ATPase, and Na+/HCO3 co-transporter were consistent with a reduced role in net acid excretion following iso-osmotic transfer. Changes in relative mRNA expression and/or activity at the intestine and gill were consistent with the roles of these organs in osmotic rather than acid–base regulation. Overall, the data emphasize the coordination of acid–base, osmoregulatory and ionoregulatory processes that occur with salinity transfer in a euryhaline fish.  相似文献   

10.
Fish compensate for acid–base disturbances primarily by modulating the branchial excretion of acid–base equivalents, with a supporting role played by adjustment of urinary acid excretion. The present study used metabolic acid–base disturbances in rainbow trout, Oncorhynchus mykiss, to evaluate the role played by cortisol in stimulating compensatory responses. Trout infused with acid (an iso-osmotic solution of 70 mmol L−1 HCl), base (140 mmol L−1 NaHCO3) or saline (140 mmol L−1 NaCl) for 24 h exhibited significant elevation of circulating cortisol concentrations. Acid infusion significantly increased both branchial (by 328 μmol kg−1 h−1) and urinary (by 5.9 μmol kg−1 h−1) net acid excretion, compensatory responses that were eliminated by pre-treatment of trout with the cortisol synthesis inhibitor metyrapone (2-methyl-1,2-di-3-pyridyl-1-propanone). The significant decrease in net acid excretion (equivalent to enhanced base excretion) of 203 μmol kg−1 h−1 detected in base-infused trout was unaffected by metyrapone treatment. Acid- and base-infusions also were associated with significant changes in the relative mRNA expression of branchial and renal cytosolic carbonic anhydrase (tCAc) and renal membrane-linked CA IV (tCA IV). Cortisol treatment caused changes in CA gene expression that tended to parallel those observed with acid but not base infusion. For example, significant increases in renal relative tCA IV mRNA expression were detected in both acid-infused (~2x) and cortisol-treated (~10x) trout, whereas tCA IV mRNA expression was significantly reduced (~5x) in base-infused fish. Despite changes in CA gene expression in acid- or base-infused fish, neither acid nor base infusion affected CAc protein levels in the gill, but both caused significant increases in branchial CA activity. Cortisol treatment similarly increased branchial CA activity in the absence of an effect on branchial CAc protein expression. Taken together, these findings provide support for the hypothesis that in rainbow trout, cortisol is involved in mediating acid–base compensatory responses to a metabolic acidosis, and that cortisol exerts its effects at least in part through modulation of CA.  相似文献   

11.
The present study assessed the immune enhancement of fish by a lactic acid bacterium (LAB) Lactobacillus rhamnosus (ATCC 53103). The bacterium was administered orally at five different doses 7.9 x 10(4) (LAB4), 2.1 x 10(6) (LAB6), 2.8 x 10(8) (LAB8), 1.9 x 10(10) (LAB10) and 9.7 x 10(10) (LAB11) CFU/g feed to rainbow trout for two weeks and the feed was changed to un-supplemented diet. From the onset of feeding supplemented diets at 1, 2, 3 and 4 weeks, blood and mucus samples were taken. During the LAB feeding period L. rhamnosus persisted in the fish intestine and in the tank water in high numbers. However, L. rhamnosus disappeared from the intestine, skin mucus and tank water within one week after the change to the non-supplemented feed. In comparison to untreated control fish, respiratory burst activity of blood cells was raised significantly in the LAB4 treated group on week 2. Serum-mediated killing of Escherichia coli was increased significantly in group LAB6 on week 2. Serum immunoglobulin levels were significantly raised only in LAB8 group on week 1 and in LAB4 and LAB8 at the end of the trial. The results show that rainbow trout immune parameters were enhanced by using probiotic bacteria.  相似文献   

12.
Natural substances are now generally preferred over chemical and synthetic compounds for the growth and immune enhancement of aquatic organisms. The aim of this study was to evaluate the effect of Saccharomyces cerevisiae extract and hydrolyzed powder on immunity, hematological parameters and body composition in rainbow trout, Oncorhynchus mykiss. Six hundred rainbow trout (50 ± 5 g mean weight) were acclimated to laboratory conditions and then randomly divided into four groups of triplicate tanks. The first group was fed with a commercial diet (control) without supplementation. The second and third groups were given a diet supplemented with 1% of yeast extract and hydrolyzed powder, respectively. The fourth group was also fed with a basal diet supplemented with 0.5% of both substances. Fish were cultured in 300‐L polyethylene tanks for 60 days; immune and hematological parameters, fillet composition and disease resistance were analyzed at days 0, 30 and 60. Results showed that a combination of Saccharomyces cerevisiae extract and hydrolyzed powder could improve the immunity and alter hematological parameters of the rainbow trout compared to the control. Mortality rates of fish fed yeast extract and hydrolyzed powder were also lower than in fish fed the control diet after challenging with Yersinia ruckeri. There were no significant changes in rainbow trout fillet composition compared to the control. It can be concluded that fish diet supplementation with a mixture of yeast extract hydrolyzed powder is preferable compared to each one used alone.  相似文献   

13.
Fish epidermal mucus contains innate immune components that provide a first line of defense against various infectious pathogens. This study reports the bioassay-guided fractionation and characterization of a novel antimicrobial peptide, myxinidin, from the acidic epidermal mucus extract of hagfish (Myxine glutinosa L.). Edman sequencing and mass spectrometry revealed that myxinidin consists of 12 amino acids and has a molecular mass of 1,327.68 Da. Myxinidin showed activity against a broad range of bacteria and yeast pathogens at minimum bactericidal concentration (MBC) ranging from 1.0 to 10.0 μg/mL. Screened pathogens, Salmonella enterica serovar Typhimurium C610, Escherichia coli D31, Aeromonas salmonicida A449, Yersinia ruckeri 96-4, and Listonella anguillarum 02-11 were found to be highly sensitive to myxinidin at the MBC of 1.0–2.5 μg/mL; Staphylococcus epidermis C621 and yeast (Candida albicans C627) had an MBC of 10.0 μg/mL. The antimicrobial activity of myxinidin was found to be two to 16 times more active than a potent fish-derived antimicrobial peptide, pleurocidin (NRC-17), against most of the screened pathogens. The microbicidal activity of myxinidin was retained in the presence of sodium chloride (NaCl) at concentrations up to 0.3 M and had no hemolytic activity against mammalian red blood cells. These results suggest that myxinidin may have potential applications in fish and human therapeutics.  相似文献   

14.
The present study aimed to investigate the potential probiotic properties of six lactic acid bacteria (LAB) intended for human use, Lactobacillus rhamnosus ATCC 53103, Lactobacillus casei Shirota, Lactobacillus bulgaricus, L. rhamnosus LC 705, Bifidobacterium lactis Bb12, and Lactobacillus johnsonii La1, and one for animal use, Enterococcus faecium Tehobak, for use as a fish probiotic. The strains for human use were specifically chosen since they are known to be safe for human use, which is of major importance because the fish are meant for human consumption. The selection was carried out by five different methods: mucosal adhesion, mucosal penetration, inhibition of pathogen growth and adhesion, and resistance to fish bile. The adhesion abilities of the seven LAB and three fish pathogens, Vibrio anguillarum, Aeromonas salmonicida, and Flavobacterium psychrophilum, were determined to mucus from five different sites on the surface or in the gut of rainbow trout. Five of the tested LAB strains showed considerable adhesion to different fish mucus types (14 to 26% of the added bacteria). Despite their adhesive character, the LAB strains were not able to inhibit the mucus binding of A. salmonicida. Coculture experiments showed significant inhibition of growth of A. salmonicida, which was mediated by competition for nutrients rather than secretion of inhibitory substances by the probiotic bacteria as measured in spent culture liquid. All LAB except L. casei Shirota showed tolerance against fish bile. L. rhamnosus ATCC 53103 and L. bulgaricus were found to penetrate fish mucus better than other probiotic bacteria. Based on bile resistance, mucus adhesion, mucus penetration, and suppression of fish pathogen growth, L. rhamnosus ATCC 53103 and L. bulgaricus can be considered for future in vivo challenge studies in fish as a novel and safe treatment in aquaculture.  相似文献   

15.
To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of 15N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R d), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R d values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R d values ranged from 0.9 μmol 100 g−1 h−1 (lysine) to 22.1 μmol 100 g−1 h−1 (threonine) with most values falling between 2 and 6 μmol 100 g−1 h−1. There was a significant correlation between R d and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.  相似文献   

16.
We used culture- and molecular-biology-based methods to investigate microbial diversity in the traditional Mongolian fermented milks “Airag” (fermented mare’s milk) and “Tarag” (fermented milk of cows, yaks, goats, or camels). By rRNA or functional gene sequencing, we identified 367 lactic acid bacteria (LAB) strains and 152 yeast strains isolated from 22 Airag and 31 Tarag samples. The total concentration of LAB in Airag (107.78 ± 0.50 c.f.u. ml–1; mean ± SD) was significantly lower (P < 0.01) than in Tarag (108.35 ± 0.62 c.f.u. ml−1), whereas the total concentration of yeasts in Airag (107.41 ± 0.61 c.f.u. ml-1) was significantly higher (P < 0.01) than in Tarag (105.86 ± 1.29 c.f.u. ml-1). Lactobacillus helveticus and Lactobacillus kefiranofaciens were isolated from Airag as the predominant LAB strains at levels of about 107 c.f.u. ml−1, whereas Lactobacillus delbrueckii subsp. bulgaricus, L. helveticus, and Streptococcus thermophilus were the predominant isolates from Tarag at about 107 c.f.u. ml−1. The lactose-fermenting Kluyveromyces marxianus was isolated predominantly from Airag as its major alcoholic fermentation component. Non-lactose-fermenting yeasts such as Saccharomyces cerevisiae, Issatchenkia orientalis, and Kazachstania unispora were the predominant isolates from Tarag, at about 105 c.f.u. ml−1. The apparent geographic differences in the L. kefiranofaciens and S. thermophilus contents of Tarag strongly suggested that differences among the animal species from which the milk was sourced, rather than geographic distances, were the most important factors influencing the diversity of the microbial composition of traditional fermented milks in Mongolia.  相似文献   

17.
Yeast were isolated from the intestine of farmed rainbow trout (Salmo gairdneri), turbot (Scophtalmus maximus), and free-living flat-fish (Pleuronectes platessa and P. flesus). The average number of viable yeasts recovered from farmed rainbow trout was 3.0 × 103 and 0.5 × 102 cells per gram homogenized intestine for white and red-pigmented yeasts, respectively. The dominant species were Debaryomyces hansenii, Saccharomyces cerevisiae, Rhodotorula rubra, and R. glutinis. In 5 of 10 free-lving marine fish, > 100 viable yeast cells per gram intestinal mucus were recovered. Red-pigmented yeasts dominated and composed >90% of the isolates. Colonization experiments were performed by inoculating rainbow trout and turbot with fish-specific, isolated yeast strains and by examining the microbial intestinal colonization at intervals. Inoculation of experimental fish with pure cultures of R. glutinis and D. hansenii HF1 yielded colonization at a level several orders of magnitude higher than before the inoculation. Up to 3.8 × 104, 3.1 × 106, and 2.3 × 109 viable yeast cells per gram intestine or feces were recovered in three separate colonization experiments. The high level of colonizing yeasts persisted for several weeks. The concentrations of yeasts in the tank water never exceeded 103 viable cells per milliliter. No traces of fish sickness as a result of high yeast colonization were recorded during any of the colonization experiments. For periods of the experiments, the concentration of aerobic bacteria in the fish intestine was lower than the intestinal yeast concentration. Scanning electron microscopy studies demonstrated a close association of the yeasts with the intestinal mucosa. The mucosal colonization was further demonstrated by separating intestinal content, mucus, and tissue. All compartments were colonized by >103 viable yeast cells per gram. No bacteria were detected on the micrographs, indicating that their affinity for the intestinal mucosa was less than that of the yeasts. Correspondence to: Thomas Andtid  相似文献   

18.
Experimental studies of infection transmission via water from infected to healthy fish were conducted. The dark-brown bacterial colonies typical for Aeromonas salmonicida on tryptone soya agar (TSA) have been isolated and counted (from 3.0±0.6×102 to 3.5±0.5×105 c.f.u. g−1) from the internal organs of naturally infected (NI) and experimentally infected (EI) perch and sea trout. No significant differences in dark-brown bacterial counts were detected between EI perch and EI sea trout. The assessment and comparison of the alterations of the biological parameters of EI European perch and sea trout with bacterium Aeromonas salmonicida subsp. salmonicida with naturally infected perch were conducted. No mortality was recorded in groups of EI perch and sea trout. Whereas, the mortality of NI perch (collected from the main sites of outbreak of disease) was observed from the second day of the experiments. Changes in morphophysiological parameters of EI perch and sea trout were similar. Different alterations in blood cell parameters of EI fish were observed, and the most noticeable was the decrease (P≤0.01) in white blood cell count (WBC) of EI perch and sea trout. Based on these results it can be deduced that there is infection transmission of bacterium A. salmonicida from European perch via water to other fish species.  相似文献   

19.
Fifty-four strains of lactic acid bacteria obtained from fermented dairy milks were investigated for possible use as probiotics and for colon cancer biological products. Five of these strains inhibited growth of eight food-borne pathogens including Helicobacter pylori, Escherichia coli, and Salmonella typhimurium. Three of these strains survived at pH 2.5 and in 0.3% bile salts. Additionally they produced no haemolysis, were resistant to kanamycin and adhered to Caco-2 cells. 16S rRNA gene sequences of probiotic strains indicated that RM11 and RM28 were Enterococcus faecium and Lactobacillus fermentum, respectively. Both the cultured medium and live whole cells from probiotic strains were tested for antiproliferation of colon cancer cells through MTT and Trypan Blue exclusion assays. The probiotic strains of E. faecium RM11 and L. fermentum RM28 also triggered antiproliferation of colon cancer cells at the rates of 21–29%, and 22–29%, respectively. This suggested that both strains could be used as potential probiotics in functional food or for colon cancer biological products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Effects of Hilyses®, fermented Saccharomyces cerevisiae (S. cerevisiae), on growth, body composition and skin mucus immune components in rainbow trout were quantified. Ninety rainbow trout (105 ± 5 g) were randomly assigned to 2 groups in triplicates and fed dietary Hilyses® (5 g kg?1) or control diet without Hilyses® for 50 days. Results of this study demonstrated that growth performance increased significantly by the dietary yeast supplement; however body composition was not affected in treatment group. At the 45th and 50th day of feeding trial, results of mucus samples demonstrated that yeast supplementation in treatment group significantly promoted enzyme activities, namely lysozyme, protease, alkaline phosphatase and esterase compared to control group. Significant increases were also observed in hemagglutination and antibacterial activity against Yersinia ruckeri in fish fed treatment diet. The present study suggests that fermented S. cerevisiae may effectively promote the growth performance and skin non-specific immune parameters in rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号