共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The final step in heme biosynthesis, insertion of ferrous iron into protoporphyrin IX, is catalyzed by protoporphyrin IX ferrochelatase (EC 4.99.1.1). We demonstrate that pre-steady state human ferrochelatase (R115L) exhibits a stoichiometric burst of product formation and substrate consumption, consistent with a rate-determining step following metal ion chelation. Detailed analysis shows that chelation requires at least two steps, rapid binding followed by a slower (k approximately 1 s-1) irreversible step, provisionally assigned to metal ion chelation. Comparison with steady state data reveals that the rate-determining step in the overall reaction, conversion of free porphyrin to free metalloporphyrin, occurs after chelation and is most probably product release. We have measured rate constants for significant steps on the enzyme and demonstrate that metal ion chelation, with a rate constant of 0.96 s-1, is approximately 10 times faster than the rate-determining step in the steady state (kcat = 0.1 s-1). The effect of an additional E343D mutation is apparent at multiple stages in the reaction cycle with a 7-fold decrease in kcat and a 3-fold decrease in kchel. This conservative mutation primarily affects events occurring after metal ion chelation. Further evaluation of structure-function data on site-directed mutants will therefore require both steady state and pre-steady state approaches. 相似文献
3.
Willows RD Hansson A Birch D Al-Karadaghi S Hansson M 《Journal of structural biology》2004,146(1-2):227-233
BchI, belonging to the AAA+ -protein family, forms the enzyme magnesium chelatase together with BchD and BchH. This enzyme catalyses the insertion of Mg2+ into protoporphyrin IX upon ATP hydrolysis. Previous studies have indicated that BchI forms ATP-dependent complexes and it is a member of the AAA+ -protein family (ATPases associated with various cellular activities) and it was suggested based on structural homology that the BchI formed hexameric complexes. AAA+ -proteins are Mg2+ -dependent ATPases that normally form oligomeric ring complexes in the presence of ATP. Single particle analysis of fully formed ring complexes of BchI observed by negative staining EM indicate that the BchI has strong 6- and 2-fold rotational symmetries and a weaker 4-fold rotational symmetry which are reminiscent of DNA helicase. A 2D average of the fully formed BchI-ATP ring complex is presented here from images of the complex obtained from negative staining EM. Other complexes are also observed in the EM micrographs and the class averages of these are indicative of the fragility and dynamic nature of the BchI complex which has been reported and they are suggestive of partially circular complexes with six or less protomers per particle. The resolution of the average circular complex is estimated at approximately 30A and it is similar in shape and size to an atomic resolution hexameric model of BchI rendered at 30A. 相似文献
4.
Fodje MN Hansson A Hansson M Olsen JG Gough S Willows RD Al-Karadaghi S 《Journal of molecular biology》2001,311(1):111-122
In chlorophyll biosynthesis, insertion of Mg(2+) into protoporphyrin IX is catalysed in an ATP-dependent reaction by a three-subunit (BchI, BchD and BchH) enzyme magnesium chelatase. In this work we present the three-dimensional structure of the ATP-binding subunit BchI. The structure has been solved by the multiple wavelength anomalous dispersion method and refined at 2.1 A resolution to the crystallographic R-factor of 22.2 % (R(free)=24.5 %). It belongs to the chaperone-like "ATPase associated with a variety of cellular activities" (AAA) family of ATPases, with a novel arrangement of domains: the C-terminal helical domain is located behind the nucleotide-binding site, while in other known AAA module structures it is located on the top. Examination by electron microscopy of BchI solutions in the presence of ATP demonstrated that BchI, like other AAA proteins, forms oligomeric ring structures. Analysis of the amino acid sequence of subunit BchD revealed an AAA module at the N-terminal portion of the sequence and an integrin I domain at the C terminus. An acidic, proline-rich region linking these two domains is suggested to contribute to the association of BchI and BchD by binding to a positively charged cleft at the surface of the nucleotide-binding domain of BchI. Analysis of the amino acid sequences of BchI and BchH revealed integrin I domain-binding sequence motifs. These are proposed to bind the integrin I domain of BchD during the functional cycle of magnesium chelatase, linking porphyrin metallation by BchH to ATP hydrolysis by BchI. An integrin I domain and an acidic and proline-rich region have been identified in subunit CobT of cobalt chelatase, clearly demonstrating its homology to BchD. These findings, for the first time, provide an insight into the subunit organisation of magnesium chelatase and the homologous colbalt chelatase. 相似文献
5.
The first committed step in chlorophyll biosynthesis is catalyzed by magnesium chelatase, a complex enzyme with at least three substrates, cooperative Mg(2+) activation, and free energy coupling between ATP hydrolysis and metal-ion chelation. A detailed functional study of the behavior of the intact magnesium chelatase has been performed, including characterization of magnesium cooperativity and the stoichiometry of ATP consumption in relation to the magnesium porphyrin produced. It is demonstrated that, in vitro, this catalyzed reaction requires hydrolysis of approximately 15 MgATP(2-) and that the chelation partial reaction is energetically unfavorable, under our assay conditions, with a DeltaG degrees ' of 25-33 kJ mol(-1). Given the likely metabolite concentrations in vivo, this results in the chelatase reaction operating far from equilibrium. We have also determined the steady-state kinetic behavior of the intact enzyme and have compared the kinetic parameters obtained with those observed for the partial reactions of individual subunits. K(DIX) (where D(IX) represents deuteroporphyrin IX) is estimated to be 3.20 microm, and K(MgATP)(2-) is 0.45 mm. k(cat) for chelation is estimated to be 0.8 min(-1), suggesting that the ATP hydrolysis catalyzed by the isolated ChlI subunit is substantially slower in the intact chelatase. The magnesium-rich form of the chelatase is a more effective catalyst of the chelation reaction; magnesium activation of the chelatase increases V, as well as the specificity constant for the reaction of MgATP(2-) and D(IX), possibly as a result of a magnesium-triggered conformational change. 相似文献
6.
Sirijovski N Olsson U Lundqvist J Al-Karadaghi S Willows RD Hansson M 《The Biochemical journal》2006,400(3):477-484
Magnesium chelatase inserts Mg2+ into protoporphyrin IX and is the first unique enzyme of the chlorophyll biosynthetic pathway. It is a heterotrimeric enzyme, composed of I- (40 kDa), D- (70 kDa) and H- (140 kDa) subunits. The I- and D-proteins belong to the family of AAA+ (ATPases associated with various cellular activities), but only I-subunit hydrolyses ATP to ADP. The D-subunits provide a platform for the assembly of the I-subunits, which results in a two-tiered hexameric ring complex. However, the D-subunits are unstable in the chloroplast unless ATPase active I-subunits are present. The H-subunit binds protoporphyrin and is suggested to be the catalytic subunit. Previous studies have indicated that the H-subunit also has ATPase activity, which is in accordance with an earlier suggested two-stage mechanism of the reaction. In the present study, we demonstrate that gel filtration chromatography of affinity-purified Rhodobacter capsulatus H-subunit produced in Escherichia coli generates a high- and a low-molecular-mass fraction. Both fractions were dominated by the H-subunit, but the ATPase activity was only found in the high-molecular-mass fraction and magnesium chelatase activity was only associated with the low-molecular-mass fraction. We demonstrated that light converted monomeric low-molecular-mass H-subunit into high-molecular-mass aggregates. We conclude that ATP utilization by magnesium chelatase is solely connected to the I-subunit and suggest that a contaminating E. coli protein, which binds to aggregates of the H-subunit, caused the previously reported ATPase activity of the H-subunit. 相似文献
7.
ClpB is a heat-shock protein that reactivates aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the family of AAA+ ATPases and forms ring-shaped oligomers: heptamers in the absence of nucleotides and hexamers in the presence of nucleotides. We investigated the thermodynamic stability of ClpB in its monomeric and oligomeric forms. ClpB contains six distinct structural domains: the N-terminal domain involved in substrate binding, two AAA+ ATP-binding modules, each consisting of two domains, and a coiled-coil domain inserted between the AAA+ modules. We produced seven variants of ClpB, each containing a single Trp located in each of the ClpB domains and measured the changes in Trp fluorescence during the equilibrium urea-induced unfolding of ClpB. We found that two structural domains: the small domain of the C-terminal AAA+ module and the coiled-coil domain were destabilized in the oligomeric form of ClpB, which indicates that only those domains change their conformation and/or interactions during formation of the ClpB rings. 相似文献
8.
Vanessa Lake Ulf Olsson Robert D Willows Mats Hansson 《European journal of biochemistry》2004,271(11):2182-2188
During biosynthesis of chlorophyll, Mg(2+) is inserted into protoporphyrin IX by magnesium chelatase. This enzyme consists of three different subunits of approximately 40, 70 and 140 kDa. Seven barley mutants deficient in the 40 kDa magnesium chelatase subunit were analysed and it was found that this subunit is essential for the maintenance of the 70 kDa subunit, but not the 140 kDa subunit. The 40 kDa subunit has been shown to belong to the family of proteins called "ATPases associated with various cellular activities", known to form ring-shaped oligomeric complexes working as molecular chaperones. Three of the seven barley mutants are semidominant mis-sense mutations leading to changes of conserved amino acid residues in the 40 kDa protein. Using the Rhodobacter capsulatus 40 and 70 kDa magnesium chelatase subunits we have analysed the effect of these mutations. Although having no ATPase activity, the deficient 40 kDa subunit could still associate with the 70 kDa protein. The binding was dependent on Mg(2+) and ATP or ADP. Our study demonstrates that the 40 kDa subunit functions as a chaperon that is essential for the survival of the 70 kDa subunit in vivo. We conclude that the ATPase activity of the 40 kDa subunit is essential for this function and that binding between the two subunits is not sufficient to maintain the 70 kDa subunit in the cell. The ATPase deficient 40 kDa proteins fail to participate in chelation in a step after the association of the 40 and 70 kDa subunits. This step presumably involves a conformational change of the complex in response to ATP hydrolysis. 相似文献
9.
Despite the global significance of chlorophylls and other modified tetrapyrroles, many aspects of their biosynthetic pathways are poorly understood. A key enzyme at the branch point between the haem and chlorophyll pathways, magnesium chelatase, couples the free energy of ATP hydrolysis to the insertion of magnesium into porphyrin, a process that is likely to be mediated through protein conformational changes. Conclusions from recent structural and functional studies of individual subunits are combined to provide a mechanistic outline of the full magnesium chelatase complex. Gathering further information presents a considerable challenge, and recent steps towards this goal will be introduced. 相似文献
10.
TorsinA is a widely expressed AAA(+) (ATPases associated with various cellular activities) ATPase of unknown function. Previous studies have described torsinA as a type II protein with a cleavable signal sequence, a single membrane spanning domain, and its C-terminus located in the ER (endoplasmic reticulum) lumen. However, in the present study we show that torsinA is not in fact an integral membrane protein. Instead we find that the mature protein associates peripherally with the ER membrane, most likely through an interaction with an integral membrane protein. Consistent with this model, we provide evidence that the signal peptidase complex cleaves the signal sequence of torsinA, and we show that the region previously suggested to form a transmembrane domain is translocated into the lumen of the ER. The finding that torsinA is a peripheral, and not an integral membrane protein as previously thought, has important implications for understanding the function of this novel ATPase. 相似文献
11.
12.
Insertion of magnesium into protoporphyrin IX is a complex ATP-dependent reaction catalysed by the enzyme Mg-chelatase. Three
separate proteins (Mg-chelatase subunits), designated as D, H and I, are involved in the chelation reaction. The genes encoding
the Mg-chelatase subunits of the green sulfur bacterium Chlorobium vibrioforme and of the cyanobacterium Synechocystis strain PCC6803 were expressed in Escherichia coli. The recombinant proteins were purified, tested for ATPase and phosphate exchange activities, and compared with the activities
of the corresponding subunits of Rhodobacter sphaeroides. The Synechocystis strain PCC6803 I subunit and the C. vibrioforme H and I subunits hydrolysed ATP at the rates of 2.0, 1.8 and 0.16 nmol (mg protein)–1 min–1, respectively. The ATPase activity of the C. vibrioforme H subunit was similar to that reported for the R. sphaeroides H subunit. The Synechocystis strain PCC6803 H subunit failed to hydrolyse ATP. The I subunit of Synechocystis strain PCC6803 and C. vibrioforme catalysed a transfer of PO4 from ATP to ADP (exchange activity) at the rate of 1.75 ± 0.15 nmol (mg protein)–1 min–1. This exchange rate was 300-fold lower than that reported for the R. sphaeroides I subunit. The PO4 exchange activities were correlated with the presence of the sequence GXRGTGKSTXVRALA in the primary structure of the three
I subunits. Mg-chelatase activity was reconstituted by combining the three subunits of the same bacterium [rates of 41–89
pmol Mg-deuteroporphyrin (mg protein)–1 min–1]. Heterologous subunit combinations resulted in low or no Mg-chelatase activity.
Received: 25 May 1998 / Revision received: 24 November 1998 / Accepted: 27 November 1998 相似文献
13.
Zhang X Shaw A Bates PA Newman RH Gowen B Orlova E Gorman MA Kondo H Dokurno P Lally J Leonard G Meyer H van Heel M Freemont PS 《Molecular cell》2000,6(6):1473-1484
p97, an abundant hexameric ATPase of the AAA family, is involved in homotypic membrane fusion. It is thought to disassemble SNARE complexes formed during the process of membrane fusion. Here, we report two structures: a crystal structure of the N-terminal and D1 ATPase domains of murine p97 at 2.9 A resolution, and a cryoelectron microscopy structure of full-length rat p97 at 18 A resolution. Together, these structures show that the D1 and D2 hexamers pack in a tail-to-tail arrangement, and that the N domain is flexible. A comparison with NSF D2 (ATP complex) reveals possible conformational changes induced by ATP hydrolysis. Given the D1 and D2 packing arrangement, we propose a ratchet mechanism for p97 during its ATP hydrolysis cycle. 相似文献
14.
Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit 总被引:2,自引:0,他引:2
Sirijovski N Lundqvist J Rosenbäck M Elmlund H Al-Karadaghi S Willows RD Hansson M 《The Journal of biological chemistry》2008,283(17):11652-11660
Photosynthetic organisms require chlorophyll and bacteriochlorophyll to harness light energy and to transform water and carbon dioxide into carbohydrates and oxygen. The biosynthesis of these pigments is initiated by magnesium chelatase, an enzyme composed of BchI, BchD, and BchH proteins, which catalyzes the insertion of Mg(2+) into protoporphyrin IX (Proto) to produce Mg-protoporphyrin IX. BchI and BchD form an ATP-dependent AAA(+) complex that transiently interacts with the Proto-binding BchH subunit, at which point Mg(2+) is chelated. In this study, controlled proteolysis, electron microscopy of negatively stained specimens, and single-particle three-dimensional reconstruction have been used to probe the structure and substrate-binding mechanism of the BchH subunit to a resolution of 25A(.) The apo structure contains three major lobe-shaped domains connected at a single point with additional densities at the tip of two lobes termed the "thumb" and "finger." With the independent reconstruction of a substrate-bound BchH complex (BchH.Proto), we observed a distinct conformational change in the thumb and finger subdomains. Prolonged proteolysis of native apo-BchH produced a stable C-terminal fragment of 45 kDa, and Proto was shown to protect the full-length polypeptide from degradation. Fitting of a truncated BchH polypeptide reconstruction identified the N- and C-terminal domains. Our results show that the N- and C-terminal domains play crucial roles in the substrate-binding mechanism. 相似文献
15.
16.
17.
18.
19.
Tobias Karlberg Susanne van den Berg Martin Hammarstr?m Johanna Sagemark Ida Johansson Lovisa Holmberg-Schiavone Herwig Schüler 《PloS one》2009,4(10)
Paraplegin is an m-AAA protease of the mitochondrial inner membrane that is linked to hereditary spastic paraplegias. The gene encodes an FtsH-homology protease domain in tandem with an AAA+ homology ATPase domain. The protein is believed to form a hexamer that uses ATPase-driven conformational changes in its AAA-domain to deliver substrate peptides to its protease domain. We present the crystal structure of the AAA-domain of human paraplegin bound to ADP at 2.2 Å. This enables assignment of the roles of specific side chains within the catalytic cycle, and provides the structural basis for understanding the mechanism of disease mutations.
Enhanced version
This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1. 相似文献20.
Anna Shestakova Abraham Hanono Stacey Drosner Matt Curtiss Brian A. Davies David J. Katzmann Markus Babst 《Molecular biology of the cell》2010,21(6):1059-1071
Vps4 is a key enzyme that functions in endosomal protein trafficking, cytokinesis, and retroviral budding. Vps4 activity is regulated by its recruitment from the cytoplasm to ESCRT-III, where the protein oligomerizes into an active ATPase. The recruitment and oligomerization steps are mediated by a complex network of at least 12 distinct interactions between Vps4, ESCRT-III, Ist1, Vta1, and Did2. The order of events leading to active, ESCRT-III–associated Vps4 is poorly understood. In this study we present a systematic in vivo analysis of the Vps4 interaction network. The data demonstrated a high degree of redundancy in the network. Although no single interaction was found to be essential for the localization or activity of Vps4, certain interactions proved more important than others. The most significant among these were the binding of Vps4 to Vta1 and to the ESCRT-III subunits Vps2 and Snf7. In our model we propose the formation of a recruitment complex in the cytoplasm that is composed of Did2-Ist1-Vps4, which upon binding to ESCRT-III recruits Vta1. Vta1 in turn is predicted to cause a rearrangement of the Vps4 interactions that initiates the assembly of the active Vps4 oligomer. 相似文献