首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol inhibition is a commonly encountered stress condition during typical yeast fermentations and often results in reduced fermentation rates and production yields. While past studies have shown that acetaldehyde addition has a significant ameliorating effect on the growth of ethanol-stressed Saccharomyces cerevisiae , this study investigated the potential ameliorating effect of acetaldehyde on a wide range of ethanol-stressed yeasts. Acetaldehyde does not appear to be a universal ameliorating agent for yeasts exposed to ethanol stress. It is also shown that as a result of an ethanol stress, most yeasts rapidly produce glycerol as an alternative means of NAD+ regeneration rather than having a specific requirement for glycerol. The results strongly suggest that both ethanol and acetaldehyde exposure have a direct effect on the cellular NAD+/NADH ratio, which can manifest itself as modulations in glycerol production.  相似文献   

2.
In the present work dynamic changes of free intracellular amino acid pools during autonomous oscillations of Saccharomyces cerevisiae were quantified in glucose-limited continuous cultivations. At a dilution rate of D = 0.22 h(-1) cyclic changes with a period of 120 min were found for many variables such as carbon dioxide production rate, dissolved oxygen, pH, biomass content, and various metabolite concentrations. On the basis of the observed dynamic patterns, free intracellular amino acids were classified to show oscillatory, stationary, or chaotic behavior. Amino acid pools such as serine, alanine, valine, leucine, or lysine were subjected to clear oscillations with a frequency of 120 min, identical to that of other described cultivation variables, indicating that there is a direct correlation between the periodic changes of amino acid concentrations and the metabolic oscillations on the cellular level. The oscillations of these amino acids were unequally phase-delayed and had different amplitudes of oscillation. Accordingly, they exhibited different patterns in phase plane plots vs. intracellular trehalose. Despite the complex and marked metabolic changes during oscillation, selected intracellular amino acids such as histidine, threonine, isoleucine, or arginine remained about constant. Concentrations of glutamate and glutamine showed a chaotic behavior. However, the ratio of glutamate to glutamine concentration was found to be oscillatory, with a period of 60 min and a corresponding figure eight-shaped pattern in a plot vs. trehalose concentration. Considering the described diversity, it can be concluded that the observed periodic changes are neither just the consequence of low or high rates of protein biosynthesis/degradation nor correlated to changing cell volumes during oscillation. The ratio between doubling time (189 min) and period of oscillation of intracellular amino acids (120 min) was 1:6. The fact that there is a close relationship between doubling time and period of oscillation underlines that the described autonomous oscillations are cell-cycle-associated.  相似文献   

3.
pH affects many processes on cell metabolism, such as enzyme kinetics. To enhance the understanding of the living cells, it is therefore indispensable to have a method to monitor the pH in living cells. To accomplish this, a dynamic intracellular pH measurement method applying low concentration benzoic acid pulse was developed. The method was thoroughly validated and successfully implemented for measuring fast dynamic intracellular pH of Saccharomyces cerevisiae in response to a glucose pulse perturbation performed in the BioSCOPE set-up. Fast drop in intracellular pH followed by partial alkalinization was observed following the pulse. The low concentration benzoic acid pulse which was implemented in the method avoids the undesirable effects that may be introduced by benzoic acid to cell metabolism.  相似文献   

4.
The presence of glucose resulted in a two- to three-fold increase in levels of Cd2+accumulated by Saccharomyces cerevisiae after 5 h compared with those observed in the absence of glucose. However, time-dependent Cd2+ uptake continued in the absence of glucose over 5 h, resulting in an appreciable increase in cellular Cd2+levels. Substantial K+ efflux but little Mg2+ and negligible Ca2+release was observed. Cell fractionation revealed that the bulk of intracellular Cd2+ was located in the vacuolar (25%) and bound (60%) fractions. Accumulation of Cd2+ ions impacted most noticeably on K+ rather than Mg2+ levels in intracellular compartments. Cytoplasmic and particularly vacuolar K+ levels decreased as Cd2+ sequestration continued resulting in increased extracellular levels. In contrast, corresponding intracellular Mg2+ pools were only modestly affected with a slight increase and decrease observed in the cytoplasmic and vacuolar fractions respectively. However, levels of bound Mg2+ decreased in response to continued Cd2+ accumulation. Received 07 March 1999/ Accepted in revised form 26 June 1999  相似文献   

5.
酿酒酵母乙醛脱氢酶的克隆与表达   总被引:1,自引:0,他引:1  
利用PCR技术从酿酒酵母(Saccharomyces cerevisiae W303-1A)总DNA中扩增得到1.9kb乙醛脱氢酶编码基因aldh,将其连接到表达载体pEtac,得到重组载体pEtac—aldh,重组载体在大肠杆菌JM109中得到高效表达。对含有aldh的基因工程菌进行表达研究表明:该菌株在37℃下,以1.0mmol/LIPTG诱导5h酶活力达到22.8U,比酶活力为15.0U/mg蛋白,而对照菌株检测不到酶活力,并且该菌的耐乙醛浓度可达3.2g/L。  相似文献   

6.
Fifty-two-day old plants of a salt tolerant line, S24 and a salt sensitive, Yecora Rojo were subjected for 15 days to 125 mol·m−3 NaCl in Hoagland’s nutrient solution under glass-house conditions. The dry matter of shoots and roots of the salt tolerant line was significantly greater over all time intervals in saline substrate than the salt sensitive line, Yecora Rojo. In the leaves of salt-treated former line concentration of Na+ and Cl was lower as compared to the latter line. The lower Na+ and Cl concentrations in the leaves of S24 were found to be associated with lower transport of these ions to the shoots whereas the reverse was true for Yecora Rojo. The lines did not differ in accumulation of either ion in roots. It is concluded that salt tolerance in these two genotypes of spring wheat is associated with restricted accumulation of toxic Na+ and Cl ions to the shoots or with restricted transport.  相似文献   

7.
AIMS: Acetaldehyde is the major carbonyl compound formed during winemaking and has implications for sensory and colour qualities of wines as well as for the use of the wine preservative SO(2). The current work investigated the degradation of acetaldehyde and SO(2)-bound acetaldehyde by two commercial Oenococcus oeni starters in white wine. METHODS AND RESULTS: Wines were produced by alcoholic fermentation with commercial yeast and adjusted to pH 3.3 and 3.6. While acetaldehyde was degraded rapidly and concurrently with malic acid at both pH values, SO(2)-bound acetaldehyde caused sluggish bacterial growth. Strain differences were small. CONCLUSIONS: Efficient degradation of acetaldehyde can be achieved by commercial starters of O. oeni. According to the results, the degradation of acetaldehyde could not be separated from malolactic conversion by oenococci. While this may be desirable in white winemaking, it may be necessary to delay malolactic fermentation (MLF) in order to allow for colour development in red wines. SO(2)-bound acetaldehyde itself maybe responsible for the sluggish or stuck MLF, and thus bound SO(2) should be considered next to free SO(2) in order to evaluate malolactic fermentability. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study provides new results regarding the metabolism of acetaldehyde and SO(2)-bound acetaldehyde during the MLF in white wine. The information is of significance to the wine industry and may contribute to reducing the concentration of wine preservative SO(2).  相似文献   

8.
A method for isolation of secretory vesicles from the yeast Saccharomyces cerevisiae based on the disintegration of protoplasts by osmotic shock followed by separation of the vesicles by centrifugation in a density gradient of Urografin was developed in this study. Two populations of the secretory vesicles that differ in density and shape were separated. Acid phosphatases (EC 3.1.3.2) were used as markers of the secretory vesicles. It was shown that the constitutive acid phosphatase (PHO3 gene product) is mainly transported to the cell surface by a lower density population of vesicles, while the repressible acid phosphatase (a heteromer encoded by PHO5, PHO10, and PHO11 genes) by a vesicle population of higher density. These data provide evidence that at least two pathways of transport of yeast secretory proteins from the place of their synthesis and maturation to the cell surface may exist. To reveal the probable reasons for transport of Pho3p and Pho5p/Pho10p/Pho11p enzymes by two different kinds of vesicles, we isolated vesicles from strains that synthesize the homomeric forms of the repressible acid phosphatase. It was demonstrated that glycoproteins encoded by the PHO10 and/or PHO11 genes could be responsible for the choice of one of the alternative transport pathways of the repressible acid phosphatase. A high correlation coefficient between bud formation and secretion of Pho5p phosphatase and the absence of correlation between bud formation and secretion of minor phosphatases Pho10p and Pho11p suggests different functional roles of the polypeptides that constitute the native repressible acid phosphatase.  相似文献   

9.
AIMS: To show that the ethanol-induced lag phase in yeast can be almost eliminated by combining pre-adaptation with acetaldehyde supplementation. METHODS AND RESULTS: Pre-adaptation to noninhibitory concentrations of ethanol and supplementation of unadapted cultures with acetaldehyde each separately reduced the lag phase of ethanol-inhibited cultures by c. 70%. By combining the two methods the ethanol-induced lag phase was virtually eliminated (90% reduction in lag time). CONCLUSIONS: Pre-adaptation to ethanol and acetaldehyde supplementation appear to promote yeast growth through different mechanisms, which are additive when combined. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of the above procedures is a potentially powerful tool for reducing the lag of stressed cultures, which may have practical applications: e.g. in reducing the lag of yeasts inoculated into lignocellulosic hydrolysates employed in fuel ethanol production.  相似文献   

10.
核糖体失活蛋白在细胞内的转运途径   总被引:1,自引:0,他引:1  
核糖体失活蛋白(ribosome—inactivating proteins,RIPs)是一类抑制蛋白质生物合成的毒蛋白,现已成为研究细胞生物学的重要工具并在临床抗肿瘤和抗病毒治疗上得到了广泛应用。现结合国内外近几年的研究进展就核糖体失活蛋白在细胞内的转运途径作一综述。  相似文献   

11.
In high cell density batch fermentations, Zymomonas mobilis produced 91 g L(-1) ethanol in 90 min but culture viability fell significantly. Similar viability losses in rapid fermentations by yeast have recently been shown to be attributable in part to the high rate of change of the extracellular ethanol concentration. However, in simulated rapid fermentations in which ethanol was pumped continuously to low cell density Z. mobilis suspensions, increases in the rate of change of ethanol concentration in the range 21-83 g L(-1) h(-1) did not lead to accelerated viability losses. The lag phase of Zymomonas cultures exposed to a 30-g L(-1) step change in ethanol concentration was much shorter than that of Saccharomyces cerevisiae, providing evidence that the comparative insensitivity of Zymomonas to high rates of change of ethanol concentration is due to its ability to adapt to changes in ethanol concentration more rapidly than yeast. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
将乙醛脱氢酶2(ALDH2)基因整合到质粒pPIC9K上,构建重组表达载体pPIC9K-coALDH2,用电转导将表达质粒pPIC9K-coALDH2转化至毕赤酵母GS115中,在毕赤酵母中表达经密码子改造的ALDH2。结果表明:重组基因工程菌GS115(pPIC9K-coALDH2)发酵液中蛋白质量浓度为8.40 mg/L,1 mL发酵液中酶活为11.35 mU。  相似文献   

13.
Summary Intracellular K activities, (K) c , in rabbit gallbladder were determined using conventional and ion-selective microelectrodes. (K) c averaged 73mm and was 1.5 times that predicted for an equilibrium distribution of the ion across both apical and basolateral membranes. Thus, K must be actively transported into the cell, and the responsible mechanism is almost certainly the Na–K exchange pump in the basolateral membrane.Measurements of the bidirectional transepithelial fluxes of42K indicate that K is secreted into the mucosal solution at a rate of 0.8 eq/cm2 hr; this value is only 6% of the rate of transcellular Na absorption by this epithelium.Calculation of the conductance of the basolateral membrane,G s, reveals that it is too low to account for the maintenance of the steady-state (K) c by a 3 Na2 K pump mechanism at the basolateral membrane if K exit across that barrier is entirely electrodiffusional.Our results together with those of others strongly suggest that a significant fraction of downhill K exit from the cell across the basolateral membrane is nonconductive and coupled to the movement of some other ion, perhaps Cl.  相似文献   

14.
15.
This study was designed to elucidate the relationship between enhanced cytoplasmic calcium levels (Ca2+ i) and membrane phospholipid degradation, a key step in the loss of cellular integrity during cardiac ischemia/reperfusion-induced damage. Isolated rat hearts were subjected to 15 min ischemia followed by 30 min reperfusion. Ca2+ i was estimated by the Indo-1 fluorescence ratio technique. Degradation of membrane phospholipids as indicated by the increase of tissue arachidonic acid content was assessed in tissue samples taken from the myocardium at various points of the ischemia/reperfusion period. The hemodynamic parameters showed almost complete recovery during reperfusion. Fluorescence ratio increased significantly during ischemia, but showed a considerable heart-to-heart variation during reperfusion. Based upon the type of change of fluorescence ratio during reperfusion, the hearts were allotted to two separate subgroups. Normalization of fluorescence ratio was associated with low post-ischemic arachidonic acid levels. In contrast, elevated fluorescence ratio coincided with enhanced arachidonic acid levels. This observation is suggestive for a relationship between the Ca2+-related fluorescence ratio and arachidonic acid accumulation probably due to a calcium-mediated stimulation of phospholipase A2.  相似文献   

16.
In the present work LC-MS/MS was applied to measure the concentrations of intermediates of glycolysis and TCA cycle during autonomous, cell-cycle synchronized oscillations in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. This study complements previously reported oscillations in carbon dioxide production rate, intracellular concentrations of trehalose and various free amino acids, and extracellular acetate and pyruvate in the same culture. Of the glycolytic intermediates, fructose 1,6-bisphosphate, 2- and 3-phosphoglycerate, and phosphoenolpyruvate show the most pronounced oscillatory behavior, the latter three compounds oscillating out of phase with the former. This agrees with previously observed metabolic control by phosphofructokinase and pyruvate kinase. Although individually not clearly oscillating, several intermediates of the TCA cycle, i.e., alpha-ketoglutarate, succinate, fumarate, and malate, exhibited increasing concentration during the cell cycle phase with high carbon flux through glycolysis and TCA cycle. The average mass action ratios of beta-phosphoglucomutase and fumarase agreed well with previously determined in vitro equilibrium constants. Minor differences resulted for phosphoglucose isomerase and enolase. Together with the observed close correlation of the pool sizes of the involved metabolites, this might indicate that, in vivo, these reactions are operating close to equilibrium, whereby care must be taken due to possible differences between in vivo and in vitro conditions. Combining the data with previously determined intracellular amino acid levels from the same culture, a few clear correlations between catabolism and anabolism could be identified: phosphoglycerate/serine and alpha-ketoglutarate/lysine exhibited correlated oscillatory behavior, albeit with different phase shifts. Oscillations in intracellular amino acids might therefore be, at least partly, following oscillations of their anabolic precursors.  相似文献   

17.
Abstract

Clathrin constitutes the coat of vesicles involved in three receptor-mediated intracellular transport pathways; the export of aggregated material from the trans-Golgi network for regulated secretion, the transfer of lysosomal hydrolases from the trans-Golgi network to lysosomes and receptor-mediated endocytosis at the plasma membrane. The clathrin subunits and the other major coat constituents, the adaptor polypeptides, interact in specific ways to build the characteristic polygonal clathrin lattice and to attach the coat to integral membrane receptors. Both clathrin coat assembly and disassembly on the cytoplasmic side of the membrane are multistep processes that are regulated by the coat constituents themselves and by cytosolic proteins and factors. Neurons represent a cell type with distinct morphology and special demands on exocytic and endocytic pathways that requires neuron-specific constituents and modifications of clathrin-coated vesicles.  相似文献   

18.
The addition of small quantities of acetaldehyde to fermentations containing inhibitory concentrations of furfural, acetate and other compounds typically present in lignocellulosic hydrolyzates significantly reduced the lag phase of yeast growth and stimulated ethanol production. Similar effects were observed when acetaldehyde (0.06 g l−1) was added to fermentations of a birch wood hydrolyzate produced by steam/acid pretreatment. Acetaldehyde addition appears to have potential as a low-cost alternative (or adjunct) to current procedures for medium detoxification in lignocellulose-to-ethanol fermentations, particularly those in which high inhibitor concentrations are generated through recycling of the culture broth. Journal of Industrial Microbiology & Biotechnology (2000) 25, 104–108. Received 18 March 2000/ Accepted in revised form 02 June 2000  相似文献   

19.
The role of oxidoreductases in reduction of carbonyl compounds was investigated by application of zymogram techniques. Eight bands were observed using ethanol with nicotinamide adenine dinucleotide (NAD) as coenzyme. Bands observed with lactic acid and (R)-(-)-phenyl-1,2-ethanediol with nicotinamide adenine dinucleotide phosphate (NADP) had similar R(m) values. 2-Hydroxyvalerate and malate manifested bands having similar R(m) values and were active with both NAD and NADP. Based on their structural similarity and identical R(m) values, oxidation of 1,4-cyclooctanediol (band #2) and cis-1,5-cyclooctanediol may be due to a common enzyme. The PAGE-zymogram technique may be used on a preparative scale to facilitate purification and full characterization on the observed stained bands.  相似文献   

20.
We previously reported that intracellular proline (Pro) confers tolerance to ethanol on the yeast Saccharomyces cerevisiae. In this study, to improve the ethanol productivity of sake, a traditional Japanese alcoholic beverage, we successfully isolated several Pro-accumulating mutants derived from diploid sake yeast of S. cerevisiae by a conventional mutagenesis. Interestingly, one of them (strain A902-4) produced more than 10-fold greater amounts of ornithine (Orn) and Pro compared to the parent strain (K901). Orn is a non-proteinogenic amino acid and a precursor of both arginine (Arg) and Pro. It has some physiological functions, such as amelioration of negative states such as lassitude and improvement of sleep quality. We also identified a homo-allelic mutation in the ARG5,6 gene encoding the Thr340Ile variant N-acetylglutamate kinase (NAGK) in strain A902-4. The NAGK activity of the Thr340Ile variant was extremely insensitive to feedback inhibition by Arg, leading to intracellular Orn accumulation. This is the first report of the removal of feedback inhibition of NAGK activity in the industrial yeast, leading to high levels of intracellular Orn. Moreover, sake and sake cake brewed with strain A902-4 contained 4–5 times more Orn than those brewed with strain K901. The approach described here could be a practical method for the development of industrial yeast strains with overproduction of Orn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号