首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubation of BHK-21 hamster fibroblasts in a serum- and amino acid-deficient medium caused a 3-fold increase in the degradation of endogenous protein, a doubling of the degradation of endocytosed epidermal growth factor, and an eightfold increase in the degradation of endocytosed alpha 2-macroglobulin. 3-Methyladenine (3MA) inhibited the deprivation-induced lysosomal degradation of both endogenous and endocytosed protein, but had no effect on basal (non-induced) degradation. 3MA also inhibited deprivation-induced protein degradation in human IMR-90 fibroblasts. Some inhibition of protein synthesis and of endocytic uptake of alpha 2-macroglobulin was observed in 3MA-treated BHK-21 cells, whereas cellular ATP levels were unaffected. These results are different from those obtained with isolated hepatocytes, and suggest that in some cells both endogenous and endocytic protein degradation may be accelerated as part of a general deprivation response.  相似文献   

2.
Vanadate inhibits protein degradation in isolated rat hepatocytes   总被引:4,自引:0,他引:4  
Vanadate (10 mM) strongly inhibited endogenous protein degradation as well as the degradation of an exogenous, endocytosed protein (asialofetuin) in isolated rat hepatocytes. Protein synthesis and cellular viability were unaffected, but changes in cell morphology suggested some interference with cytoskeletal elements. The effect of vanadate was comparable to the effects of several other degradation inhibitors (lysosomotropic amines, leupeptin, vinblastine, amino acids, dimethylaminopurine riboside) known to inhibit the autophagic/lysosomal pathway of protein degradation. Vanadate inhibited proteolysis in a liver homogenate at pH 5, suggesting a direct effect upon the lysosomal proteinases.  相似文献   

3.
Vaccinia virus induces cellular mRNA degradation.   总被引:21,自引:15,他引:6       下载免费PDF全文
The infection of mouse L cells with vaccinia virus induced a rapid inhibition of cellular polypeptide synthesis and a diversion of protein synthesis to the exclusive production of viral polypeptides. This shutoff of cell-specific protein synthesis was achieved by a novel mechanism by which the virus induced the rapid degradation of cellular mRNAs. Concurrent with the degradation of cellular mRNA, the virus proceeds in the orderly temporal expression of its own genetic information. The effect of vaccinia virus infection upon two abundant L-cell mRNAs was assessed by using the highly conserved cDNA sequences that encode chicken beta-actin and rat alpha-tubulin. Hybridization analyses demonstrated that throughout infection there is a rapid and progressive degradation of both of these mRNAs. In fact, after 3 h of infection they are reduced to less than 50% of their concentration in uninfected L cells, and between 8 to 10 h they are almost entirely degraded. This observation explains in part the mechanism by which vaccinia virus inhibits host cell protein synthesis.  相似文献   

4.
Stimulation of resting transformed cells (Chang liver cells), prelabeled with [3H] leucine, with fetal calf serum, caused increased nuclear translocation of [3H] nonhistone proteins ([3H] NHP) and DNA synthesis and a parallel inhibition of proteolysis of cellular proteins. [3H] NHP migration was independent of protein synthesis. Fractionation of the nuclear proteins in a pH gradient of 2.5-6.5, showed that [3H] NHP fractions with high degradation rates in resting cells corresponded to the [3H] NHP fractions with high migration rates in stimulated cells, suggesting that degradation and migration of [3H] NHP are linked. Conditioned medium (COM) produced by Chang cells had similar effects as serum, suggesting that factors produced by these transformed cells, control cell growth by a mechanism that is similar to serum. The lysosomotropic amine eserine had similar effects as serum and COM. Based on the similarity of the effects, it would appear that serum and COM inhibit lysosomal proteolysis. It is proposed that serum and COM induce NHP migration to the nucleus by inhibiting lysosomal degradation of these proteins. Serum and COM caused also migration of [3H] histones to the nucleus, however the mechanism is not clear.  相似文献   

5.
A number of antitumor drugs act via the oxidation of nuclear material in the tumor cell. It is therefore important to know if tumor cells can effectively and precisely cope not only with oxidatively induced DNA damage, but also with nuclear protein oxidation. In this study, we investigated the endogenous degradation of oxidatively damaged histones in K562 human leukemic cells after oxidative challenge and demonstrated a link to the overall cellular stress response pathways by poly-ADP-ribose-polymerase (PARP). After an oxidative challenge, endogenous nuclear protein degradation, as well as histone degradation, was enhanced. Among the histone fractions, histone H1 revealed the highest degradation rate, and more than 85% of the total degraded H1 disappeared in the first 30 min after oxidative challenge. Short-term degradation of histones up to 30 min, as well as long-term degradation up to 48 h after oxidative challenge, was significantly reduced in the presence of the PARP inhibitor 3-aminobenzamide, and nearly completely abrogated by the selective proteasome inhibitor lactacystin. Immunoprecipitation experiments indicated that the proteasome specifically degraded oxidized histones. Thus, we show that the nuclear proteosome system in tumor cells is capable of preventing the accumulation of oxidized proteins in this compartment and may suggest further treatment strategies to effectively interfere with the protein "repair" and replacement strategies of tumor cells.  相似文献   

6.
About 100 different purine derivatives and analogs were tested for their effect on protein synthesis and protein degradation in isolated rat hepatocytes. These included 6-aminopurines (adenine and adenosine analogs), 6-mercaptopurines, chloropurines, oxypurines, cytokinins, methylxanthines, methylindoles, benzimidazoles, and benzodiazepines. Most of the compounds were either inactive or inhibited protein synthesis as much as or more than they inhibited protein degradation. However, three methylated 6-aminopurines (3-methyladenine, 6-dimethylaminopurine riboside, and puromycin aminonucleoside) and four 6-mercaptopurines (6-methylmercaptopurine, 6-methylmercaptopurine riboside, 6-mercaptopurine riboside, and 2′,3′,5t-?triacetyl-6-mercaptopurine riboside) had a markedly stronger effect on protein degradation than on synthesis, and might therefore be potentially useful as selective degradation inhibitors. None of the seven above-mentioned purines had any significant effect on the degradation of the exogenous protein, asialofetuin, and would therefore seem to selectively inhibit endogenous protein degradation. Since the degradation was not further affected by purines in the presence of amino acids or lysosomotropic amines, it is suggested that the purines exert their effect specifically upon the autophagic/lysosomal pathway. All the mercaptopurines significantly depressed cellular ATP levels, whereas the methylated aminopurines did not. For this reason, the latter are probably more useful as degradation inhibitors. 3-Methyladenine had no effect on protein synthesis at a concentration (5 mm) which inhibited protein degradation by more than 60%, and may therefore be regarded as a highly specific inhibitor of autophagy.  相似文献   

7.
Stimulation of resting normal rat kidney fibroblasts, prelabeled with [3H]leucine, by platelet-derived growth factor (PDGF) caused inhibition of cellular protein degradation and a parallel increased nuclear translocation of 3H-labeled nonhistone proteins (3H-NHP) and DNA synthesis. Nuclear translocation of these proteins was independent of protein synthesis. Fractionation of the nuclear 3H-NHP in a pH gradient of 2.5-6.5 showed that the protein fractions with a high degree of proteolysis in resting cells corresponded to the protein fractions with a high extent of translocation in stimulated cells, suggesting that degradation and translocation of these proteins may be related. PDGF inhibited cellular uptake of [3H]chloroquine, suggesting that PDGF inhibits NHP degradation via the lysosomal pathway. These observations support the hypothesis that PDGF induces NHP translocation to the nucleus by inhibiting lysosomal degradation of these proteins.  相似文献   

8.
9.
Summary Toluene treated cells have been used to study the processes of DNA synthesis and DNA degradation in ultra-violet irradiated Escherichia coli K12. Synthesis and degradation are both shown to occur extensively if polynucleotide ligase is inhibited, and to occur to a much lesser extent if ligase activity is optimal. Extensive UV-induced DNA synthesis in toluene-treated cells requires ATP for the initial incision step, and DNA polymerase I. Extensive degradation also depends on the early ATP-dependent incision step, and the subsequent degradation shows a partial requirement for ATP. Curtailment of degradation by ligase requires DNA polymerase activity, but is not dependent upon DNA polymerase I. Apparently this process can be carried out with equal facility by either DNA polymerase II or polymerase III. These observations suggest that extensive DNA polymerase I-dependent repair synthesis and extensive DNA degradation are facets of two divergent pathways of excision repair, both of which depend upon the early uvrABC determined ATP-dependent incision step.  相似文献   

10.
Human adenovirus type 5 and temperature-sensitive mutants ts36, ts37, and ts125 induced cellular DNA synthesis in quiescent rodent cells at both permissive and nonpermissive temperatures. Cellular DNA synthesis induced by adenovirus type 5 or by serum required protein synthesis for both initiation and continuation, whereas viral DNA synthesis was not dependent upon continued protein synthesis once it was initiated. Both cellular and viral DNA replication was induced in adenovirus type 5-infected cells in the presence of dibutyryl cyclic AMP at concentrations which inhibited induction by serum which suggested that some of the controls of DNA synthesis in serum-treated and virus-infected cells are different. After adenovirus infection of quiescent cells, there was a decrease in the number of cells with G1 DNA content and an increase in cells with G2 diploid and greater DNA contents. Thus, adenovirus type 5 induces a complete round of cellular DNA replication, but in some cells, it induces a second round without completion of a normal mitosis. These results suggest that adenovirus type 5 is able to alter cell growth cycle controls in a way which may be related to its ability to transform cells.  相似文献   

11.
Conditions were defined under which rates of protein synthesis and degradation could be estimated in alveolar macrophages isolated from rabbits by pulmonary lavage and incubated in the presence of plasma concentrations of amino acids and 5.6 mM-glucose. Phenylalanine was validated as suitable precursor for use in these studies: it was not metabolized appreciably, except in the pathways of protein synthesis and degradation; it entered the cells rapidly; it maintained a stable intracellular concentration; and it was incorporated into protein at measurable rates. When extracellular phenylalanine was raised to a concentration sufficient to minimize dilution of the specific radioactivity of the precursor for protein synthesis with amino acid derived from protein degradation, the specific radioactivity of phenylalanyl-tRNA was only 60% of that of the extracellular amino acid. This relationship was unchanged in cells where proteolysis increased 2.5-fold after uptake and degradation of exogenous bovine serum albumin. In contrast, albumin prevented the decrease in phenylalanine incorporation observed in macrophages deprived of an exogenous source of amino acids. These observations suggested that macrophages preferentially re-utilized amino acids derived from the degradation of endogenous, but not from exogenous (albumin), protein. However, when the extracellular supply of amino acids was restricted, substrates derived from albumin catabolism could support the protein-synthetic pathway.  相似文献   

12.
In a previous report it was shown that inhibited DNA synthesis and altered morphology resulted when human fibroblasts (HF) were plated in 3% fetal calf serum (FCS) medium preincubated with thrombin (Hall and Ganguly, 1980a). This was in contrast to the stimulatory effects of this enzyme when added to cells several hours after subculture. Those observations suggested that thrombin may act upon serum components of the growth medium necessary for initial culture establishment following cell plating. In this report, the relationship of serum fibronectin (FN) to this thrombin-mediated inhibitory phenomena was investigated. It was found that the development of altered morphology and inhibited DNA synthesis could be completely prevented by the addition of this glycoprotein to medium preincubated with thrombin. Cell shape and DNA synthesis appeared to be closely related and both parameters showed a dose-dependent sensitivity to added fibronectin. To further investigate this, a technique was developed in which cell shape could be selectively varied and DNA synthesis measured in the absence of serum or thrombin. These studies indicated that cell shape was closely related to DNA synthesis and morphologies identical to that seen in thrombin-treated medium were produced. As observed in the thrombin system, normal cellular appearance and DNA synthesis could be restored by the addition of fibronectin. The results of this work suggest that thrombin acts upon medium components necessary for normal morphological development, possibly fibronectin, in cells following subculture. Inhibited DNA synthesis and growth seem to arise as a direct consequence of this effect.  相似文献   

13.
Rat embryo fibroblasts, grown in Eagle's MEM with 10% serum, showed a rapid increase in autophagic vacuoles when placed in MEM with 0-1% serum. Concurrent with this response, degradation of cellular proteins showed a 2-fold increase. We did not find any increases in cathepsin D, beta-glucuronidase, beta-galactosidase, and beta-glucosidase, or proteolytic activity of cell homogenates at pH 3.7 towards endogenous substrates. Homogenates prepared in 250 mM sucrose at pH 7.0 showed a 40% increase in protein breakdown. These data support the hypothesis that the induced increase in proteolysis, characteristic of cells placed in a nutritionally deficient medium, is effected by an activated vacuolar apparatus (lysosomes and autophagic vacuoles). We suggest, however, that this mechanism is distinct from normal protein turnover in the cell, but can be rapidly induced by appropriate alterations in the cellular environment. Finally, this induced proteolytic mechanism is not dependent upon an increase in lysosomal enzymes, but rather a structural alteration within the cell which effects a transfer of cellular proteins into the vacuolar apparatus.  相似文献   

14.
UV-induced DNA degradation was studied in mycellial cells of Aspergillus nidulans wild type and several uvs mutants. It was shown to be an enzymatic specific process which possibly reflects the excision of pyrimidine dimers from UV-damaged DNA. Inhibition of DNA degradation by caffeine and 2,4-dinitrophenol shows the connection between degradation and repair of DNA. Two ways of DNA degradation were found in A. nidulans cells, one of them being glucose dependent and the other--glucose independent. The dependence of DNA degradation on protein synthesis before and after UV-irradiation was demonstrated. The scheme of ways of DNA degradation and its genetic control were suggested on the basis of uvs mutations effect on UV-induced DNA degradation.  相似文献   

15.
An apparent subspecies of normal human serum low density lipoprotein (LDL-In) has been identified with suppressive activity for early or facilitating events of human lymphocyte mitogen and allogenic cells stimulation in vitro. This report describes the effects of in vivo administration of LDL-In on the mouse anti-SRBC immune response. Human LDL-In is not species specific and was capable of suppressing the in vivo mouse anti-sheep erythrocyte (SRBC) hemagglutination response by 88% after the administration of 500 to 600 mug LDL-In IV, whereas human serum high density lipoproteins and fibrinogen had no effect. Maximal suppression occurred only when LDL-In was injected 24 to 48 hr before antigen administration. Simultaneous or subsequent injection of LDL-In had no effect. The activity of LDL-In was influenced by antigen dose and maximal at low antigen doses. The number of splenic plaque-forming cells was also reduced indicating a suppression of the clonal expansion of primary B cells to antibody-secreting cells rather than only suppression of antibody synthesis by differentiated B cells and their progeny. These observations suggest the hypothesis that endogenous LDL-In could play an important immunoregulatory role in the maintenance of immune homeostasis and the "natural" suppression of non-productive lymphocyte proliferation.  相似文献   

16.
Cytotoxicity of pokeweed antiviral protein   总被引:1,自引:0,他引:1  
G M Aron  J D Irvin 《Cytobios》1988,55(221):105-111
Pokeweed antiviral protein, a plant protein which inactivates eukaryotic ribosomes, was found to be cytotoxic to both HeLa and Vero cells. Cellular protein synthesis was inhibited by exposure of the cells to microM concentrations of the antiviral protein for 24 h periods or longer. The extent of the inhibition of cellular protein synthesis was dependent upon the time of exposure to pokeweed antiviral protein and was partially reversed by washing the cells at various times prior to the measurement of protein synthesis. The antiviral protein was also observed to bind nonspecifically to cells at both 4 degrees and 34 degrees C. The data indicate that the pokeweed antiviral protein is capable of slowly entering mammalian cells which results in the inhibition cellular protein synthesis.  相似文献   

17.
Reticulocytes contain a nonlysosomal, ATP-dependent system for degrading abnormal proteins and normal proteins during cell maturation. Vanadate, which inhibits several ATPases including the ATP-dependent proteases in Escherichia coli and liver mitochondria, also markedly reduced the ATP-dependent degradation of proteins in reticulocyte extracts. At low concentrations (K1 = 50 microM), vanadate inhibited the ATP-dependent hydrolysis of [3H]methylcasein and denatured 125I-labeled bovine serum albumin, but it did not reduce the low amount of proteolysis seen in the absence of ATP. This inhibition by vanadate was rapid in onset, reversed by dialysis, and was not mimicked by molybdate. Vanadate inhibits proteolysis at an ATP-stimulated step which is independent of the ATP requirement for ubiquitin conjugation to protein substrates. When the amino groups on casein and bovine serum albumin were covalently modified so as to prevent their conjugation to ubiquitin, the derivatized proteins were still degraded by an ATP-stimulated process that was inhibited by vanadate. In addition, vanadate did not reduce the ATP-dependent conjugation of 125I-ubiquitin to endogenous reticulocyte proteins, although it markedly inhibited their degradation. In intact reticulocytes vanadate also inhibited the degradation of endogenous proteins and of abnormal proteins containing amino acid analogs. This effect was rapid and reversible; however, vanadate also reduced protein synthesis and eventually lowered ATP levels in the intact cells. Vanadate (10 mM) has also been reported to decrease intralysosomal proteolysis in hepatocytes. However, in liver extracts this effect on lysosomal proteases required high concentrations of vanadate (K1 = 500 microM) and was also observed with molybdate, unlike the inhibition of ATP-dependent proteolysis in reticulocytes.  相似文献   

18.
We compared the breakdown of total cellular protein with that of the contractile protein, myosin, in cultured C2 mouse skeletal myotubes. The degradation of long-lived cellular proteins (which comprise the vast majority of myotube proteins) was inhibited by serum, insulin, and rat insulin-like growth factor-2. A physiological concentration of insulin was effective, but most of the effect of insulin occurred at concentrations well above the physiological range. IGF-2 inhibited protein breakdown at concentrations well within the range of total IGF-2 known to be present in the serum of fetal and neonatal rats. The breakdown of short-lived proteins was not altered by insulin or serum. We measured myosin degradation using a monoclonal antibody directed against myosin heavy chain. The half-life of myosin was 27 hours, and myosin breakdown was not altered by serum withdrawal applies to certain proteins, but not to others.  相似文献   

19.
Proteotoxicity resulting from accumulation of damaged/unwanted proteins contributes prominently to cellular aging and neurodegeneration. Proteasomal removal of these proteins upon covalent polyubiquitination is highly regulated. Recent reports proposed a role for autophagy in clearance of diffuse ubiquitinated proteins delivered by p62/SQSTM1. Here, we compared the turnover dynamics of endogenous ubiquitinated proteins by proteasomes and autophagy by assessing the effect of their inhibitors. Autophagy inhibitors bafilomycin A1, ammonium chloride, and 3-methyladenine failed to increase ubiquitinated protein levels. The proteasome inhibitor epoxomicin raised ubiquitinated protein levels at least 3-fold higher than the lysosomotropic agent chloroquine. These trends were observed in SK-N-SH cells under serum or serum-free conditions and in WT or Atg5(-/-) mouse embryonic fibroblasts (MEFs). Notably, chloroquine considerably inhibited proteasomes in SK-N-SH cells and MEFs. In these cells, elevation of p62/SQSTM1 was greater upon proteasome inhibition than with all autophagy inhibitors tested and was reduced in Atg5(-/-) MEFs. With epoxomicin, soluble p62/SQSTM1 associated with proteasomes and p62/SQSTM1 aggregates contained inactive proteasomes, ubiquitinated proteins, and autophagosomes. Prolonged autophagy inhibition (96 h) failed to elevate ubiquitinated proteins in rat cortical neurons, although epoxomicin did. Moreover, prolonged autophagy inhibition in cortical neurons markedly increased p62/SQSTM1, supporting its degradation mainly by autophagy and not by proteasomes. In conclusion, we clearly demonstrate that pharmacologic or genetic inhibition of autophagy fails to elevate ubiquitinated proteins unless the proteasome is affected. We also provide strong evidence that p62/SQSTM1 associates with proteasomes and that autophagy degrades p62/SQSTM1. Overall, the function of p62/SQSTM1 in the proteasomal pathway and autophagy requires further elucidation.  相似文献   

20.
Cross-talk between integrin-mediated adhesion and growth factors has been described in many recent studies; however, the underlying mechanisms remain incompletely understood. We report here that detachment of cells from the extracellular matrix induced a decrease in both the autophosphorylation and protein levels of the platelet-derived growth factor receptor beta (PDGF-R beta), which was completely reversed upon replating cells on fibronectin. The effect occurred in all cells examined but to a greater extent in primary fibroblasts compared with established cell lines. Decreased PDGF-R levels in suspended cells correlated with ubiquitination of the PDGF-R and was blocked by treatment with inhibitors of the proteasome pathway. Unlike PDGF-induced down-regulation, detachment-induced degradation did not require receptor autophosphorylation, internalization, or tyrosine kinase activity. We conclude that cell detachment results in cellular desensitization to PDGF that is mediated by degradation of the PDGF-R via a novel ubiquitin-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号