首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The endothelium-dependent hyperpolarization of cells has a crucial role in regulating vascular tone, especially in microvessels. Nitric oxide (NO) and prostacyclin (PGI2), in addition to endothelium-derived hyperpolarizing factor (EDHF), have been reported to hyperpolarize vascular smooth muscle in several organs. Studies have reported the hyperpolarizing effects of these factors are increased by a stretch in large coronary arteries. EDHF has not yet been identified and cytochrome P-450 metabolites and H2O2 are candidates for EDHF. With the use of the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylbarbituric acid)trimethione oxonol [DiBAC4(3)], we examined whether NO, PGI2, cytochrome P-450 metabolites, and H2O2 contribute to ACh-induced hyperpolarization in pressurized coronary microvessels. Canine coronary arterial microvessels (60-356 mum internal diameter) were cannulated and pressurized at 60 cmH2O in a vessel chamber perfused with physiological salt solution containing DiBAC4(3). Fluorescence intensity and diameter were measured on a computer. There was a linear correlation between changes in the fluorescence intensity and membrane potential. ACh significantly decreased the fluorescence intensity (hyperpolarization) of the microvessels without any inhibitors. Endothelial damage caused by air perfusion abolished the ACh-induced decrease in fluorescence intensity. The inhibitors of NO synthase and cyclooxygenase did not affect the ACh-induced decreases in the fluorescence intensity. The addition of 17-octadecynoic acid, a cytochrome P-450 monooxygenase inhibitor, to those inhibitors significantly attenuated the ACh-induced decreases in fluorescence intensity, whereas catalase, an enzyme that dismutates H2O2 to form water and oxygen, did not. Furthermore, catalase did not affect the vasodilation produced by ACh. These results indicate that NO and PGI2 do not contribute to the ACh-induced hyperpolarization and that the cytochrome P-450 metabolites but not H2O2 are involved in EDHF-mediated hyperpolarization in canine coronary arterial microvessels.  相似文献   

2.
We previously reported that in mesenteric arteries from aged Otsuka Long-Evans Tokushima fatty (OLETF) rats (a type 2 diabetes model) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired while endothelium-derived contracting factor (EDCF)-mediated contraction is enhanced (Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K. Am J Physiol Heart Circ Physiol 293: H1480-H1490, 2007). Here we investigated whether acute and/or chronic treatment with metformin might improve this imbalance between the effects of the above endothelium-derived factors in mesenteric arteries isolated from OLETF rats. In acute studies on OLETF mesenteric arteries, ACh-induced relaxation was impaired and the relaxation became weaker at high ACh concentrations. Both metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside [AICAR, an AMP-activated protein kinase (AMPK) activator that is also activated by metformin] 1) diminished the tendency for the relaxation to reverse at high ACh concentrations and 2) suppressed both ACh-induced EDCF-mediated contraction and ACh-stimulated production of prostanoids (thromboxane A2 and PGE2). In studies on OLETF arteries from chronically treated animals, metformin treatment (300 mg.kg(-1).day(-1) for 4 wk) 1) improved ACh-induced nitric oxide- or EDHF-mediated relaxation and cyclooxygenase (COX)-mediated contraction, 2) reduced EDCF-mediated contraction, 3) suppressed production of prostanoids, and 4) reduced superoxide generation. Metformin did not alter the protein expressions of endothelial nitric oxide synthase (eNOS), phospho-eNOS (Ser1177), or COX-1, but it increased COX-2 protein. These results suggest that metformin improves endothelial functions in OLETF mesenteric arteries by suppressing vasoconstrictor prostanoids and by reducing oxidative stress. Our data suggest that within the timescale studied here, metformin improves endothelial function through this direct mechanism, rather than by improving metabolic abnormalities.  相似文献   

3.
Caveolae represent an important structural element involved in endothelial signal-transduction. The present study was designed to investigate the role of caveolae in endothelium-dependent relaxation of different vascular beds. Caveolae were disrupted by cholesterol depletion with filipin (4x10(-6) g L(-1)) or methyl-beta-cyclodextrin (MCD; 1x10(-3) mol L(-1)) and the effect on endothelium-dependent relaxation was studied in rat aorta, small renal arteries and mesenteric arteries in the absence and presence of L-NMMA. The contribution of NO and EDHF, respectively, to total relaxation in response to acetylcholine (ACh) gradually changed from aorta (71.2+/-6.1% and 28.8+/-6.1%), to renal arteries (48.6+/-6.4% and 51.4+/-6.4%) and to mesenteric arteries (9.1+/-4.0% and 90.9+/-4.1%). Electron microscopy confirmed filipin to decrease the number of endothelial caveolae in all vessels studied. Incubation with filipin inhibited endothelium-dependent relaxation induced by cumulative doses of ACh (3x10(-9)-10(-4) mol L(-1)) in all three vascular beds. In aorta, treatment with either filipin or MCD only inhibited the NO component, whereas in renal artery both NO and EDHF formation were affected. In contrast, in mesenteric arteries, filipin treatment only reduced EDHF formation. Disruption of endothelial caveolae is associated with the impairment of both NO and EDHF in acetylcholine-induced relaxation.  相似文献   

4.
The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.  相似文献   

5.
We determined the role of an endothelium-derived contracting factor in the impaired relaxation response to ACh of conduit pulmonary arteries (PAs) isolated from rats with hypoxic pulmonary hypertension (PH). A PGH2/thromboxane A2 (TxA2)-receptor antagonist (ONO-3708) partially restored the impairment of ACh-induced relaxation, whereas TxA2 synthase inhibitors (OKY-046 and CV-4151) did not affect the impaired relaxation in phenylephrine-precontracted hypertensive PAs. Endothelium-denuded hypertensive PA rings showed no difference in the response to ACh between preparations with and without ONO-3708. In both endothelium-denuded control and hypertensive PAs, exogenous PGH2 induced contractions, and the magnitude of the contractions was greater in the control than in hypoxic PH preparations. An endothelin A-receptor antagonist (BQ-485), an endothelin B-receptor antagonist (BQ-788), and a superoxide anion scavenger (superoxide dismutase) did not restore the impaired response to ACh in hypertensive PAs. These findings suggest that PGH2 produced from the conduit PAs of rats with chronic hypoxic PH may be the endothelium-derived contracting factor responsible for the impairment of ACh-mediated vasorelaxation.  相似文献   

6.
The present study examined the hypothesis that potassium ions act as an endothelium-derived hyperpolarizing factor (EDHF) released in response to ACh in small mesenteric arteries displaying myogenic tone. Small mesenteric arteries isolated from rats were set up in a pressure myograph at either 60 or 90 mmHg. After developing myogenic tone, responses to raising extracellular potassium were compared to those obtained with ACh (in the presence of nitric oxide synthase and cyclo-oxygenase inhibitors). The effects of barium and oubain, or capsaicin, on responses to raised extracellular potassium or ACh were also determined. The effects of raised extracellular potassium levels and ACh on membrane potential, were measured using sharp microelectrodes in pressurised arteries. Rat small mesenteric arteries developed myogenic tone when pressurised. On the background of vascular tone set by a physiological stimulus (i.e pressure), ACh fully dilated the small arteries in a concentration-dependent manner. This response was relatively insensitive to the combination of barium and ouabain, and insensitive to capsaicin. Raising extracellular potassium produced a more inconsistent and modest vasodilator response in pressurised small mesenteric arteries. Responses to raising extracellular potassium were sensitive to capsaicin, and the combination of barium and ouabain. ACh caused a substantial hyperpolarisation in pressurized arteries, while raising extracellular potassium did not. These data indicate that K+ is not the EDHF released in response to ACh in myogenically active rat mesenteric small arteries. Since the hyperpolarization produced by ACh was sensitive to carbenoxolone, gap junctions are the likely mediator of EDH responses under physiological conditions.  相似文献   

7.
Ca+ -activated K+ -channels (KCa) regulate vasomotor tone via smooth muscle hyperpolarization and relaxation. The relative contribution of the endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation differs depending on vessel type and size. It is unknown whether these KCa channels are differentially distributed along the same vascular bed and hence have different roles in mediating the EDHF response. We therefore assessed the role of small- (SKCa), intermediate- (IKCa), and large-conductance (BKCa) channels in mediating acetylcholine-induced relaxations in both first- and fourth-order side branches of the rat superior mesenteric artery (MA1 and MA4, respectively). Two-millimeter segments of each MA were mounted in the wire myograph, incubated with Nomega-nitro-L-arginine methyl ester (L-NAME, 100 micromol/l) and indomethacin (10 micromol/l), and precontracted with phenylephrine (10 micromol/l). Cumulative concentration-response curves to ACh (0.001-10 micromol/l) were performed in the absence or presence of selective KCa channel antagonists. Apamin almost completely abolished these relaxations in MA4 but only partially blocked relaxations in MA1. The selective IKCa channel blocker 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) caused a significantly greater inhibition of the ACh-induced relaxation in MA4 compared with MA1. Iberiotoxin had no inhibitory effect in MA4 but blunted relaxation in MA1. Relative mRNA expression levels of SKCa (rSK1, rSK3, and rSK4 = rIK1) were significantly higher in MA4 compared with MA1. BKCa (rBKalpha1 and rBKbeta1) genes were similar in both MA1 and MA4. Our data demonstrate regional heterogeneity in SKCa and IKCa function and gene expression and stress the importance of these channels in smaller resistance-sized arteries, where the role of EDHF is more pronounced.  相似文献   

8.
We investigated whether the balance between endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs) might be altered in mesenteric arteries from aged Otsuka Long-Evans Tokushima Fatty (OLETF) rats (a Type 2 diabetic model) [vs. age-matched control Long-Evans Tokushima Otsuka (LETO) rats]. ACh-induced relaxation was impaired in the OLETF group, and a tendency for the relaxation to reverse at high ACh concentrations was observed in both groups. This tendency was abolished by indomethacin. Nitric oxide- and/or endothelium-derived hypolarizing factor-mediated relaxation and the protein expressions of phospho-endothelial nitric oxide synthase (Ser1177) and extracellular superoxide dismutase were also reduced in OLETF. An ACh-induced contraction was observed at higher ACh concentrations in the presence of N(G)-nitro-L-arginine (L-NNA) but was greater in OLETF rats. This contraction in OLETF rats was reduced by cyclooxygenase (COX) inhibitors and by prostanoid-receptor antagonists. The ACh-induced productions of thromboxane A(2) and PGE(2) were greater in OLETF than LETO rats, as were the mesenteric artery COX-1 and COX-2 protein expressions. Moreover, tert-butyl hydroperoxide (t-BOOH) (membrane-permeant oxidant) induced a concentration-dependent contraction that was greater in OLETF rats. The t-BOOH-mediated contraction was increased both by L-NNA and by endothelium removal in LETO but not OLETF rats, suggesting that a negative modulatory role of the endothelium was lost in OLETF rats. These results suggest that an imbalance between EDRFs and EDCFs may be implicated in the endothelial dysfunction seen in aged OLETF mesenteric arteries, and may be attributable to increased oxidative stress.  相似文献   

9.
ACh-induced endothelium-dependent relaxation in rabbit small mesenteric arteries is resistant to N-nitro-L-arginine (L-NA) and indomethacin but sensitive to high K+, indicating the relaxations are mediated by endothelium-derived hyperpolarizing factors (EDHFs). The identity of the EDHFs in this vascular bed remains undefined. Small mesenteric arteries pretreated with L-NA and indomethacin were contracted with phenylephrine. ACh (10(-10) to 10(-6) M) caused concentration-dependent relaxations that were shifted to the right by lipoxygenase inhibition and the Ca(2+)-activated K+ channel inhibitors apamin (100 nM) or charybdotoxin (100 nM) and eliminated by the combination of apamin plus charybdotoxin. Relaxations to ACh were also blocked by a combination of barium (200 microM) and apamin but not barium plus charybdotoxin. Addition of K+ (10.9 mM final concentration) to the preconstricted arteries elicited small relaxations. K+ addition before ACh restored the charybdotoxin-sensitive component of relaxations to ACh. K+ (10.9 mM) also relaxed endothelium-denuded arteries, and the relaxations were inhibited by barium but not by charybdotoxin and apamin. With the use of whole cell patch-clamp analysis, ACh (10(-7) M) stimulated voltage-dependent outward K+ current from endothelial cells, which was inhibited by charybdotoxin, indicating K+ efflux. Arachidonic acid (10(-7) to 10(-4) M) induced concentration-related relaxations that were inhibited by apamin but not by charybdotoxin and barium. Addition of arachidonic acid after K+ (10.9 mM) resulted in more potent relaxations to arachidonic acid compared with control without K+ (5.9 mM). These findings suggest that, in rabbit mesenteric arteries, ACh-induced, L-NA- and indomethacin-resistant relaxation is mediated by endothelial cell K+ efflux and arachidonic acid metabolites, and a synergism exists between these two separate mechanisms.  相似文献   

10.
We examined the effects of dietary soy on the contributions of endothelium-derived hyperpolarising factor (EDHF), nitric oxide (NO), and oxidative stress to vascular tone in isolated aortic rings and small mesenteric and pulmonary arteries in vitro. Male Wistar rats were either continuously fed a soy-deficient diet (SD) or switched from a soy-deficient diet to a soy-rich one for 6 months (SW). Contractile responses were generally smaller in arteries from SW rats. In mesenteric arteries, this difference was blunted by L-NAME, but not by charybdotoxin and apamin. Preconstricted SW mesenteric arteries were more sensitive to acetylcholine (ACh) than SD ones. This difference was unaffected by L-NAME but was abolished by charybdotoxin and apamin. Exogenous superoxide dismutase (SOD) and catalase induced powerful relaxations in aortic rings, which were smaller in those from SW rats. In mesenteric and pulmonary arteries, however, they partially inhibited ACh-mediated relaxation, and enhanced PGF(2alpha)-mediated contraction, respectively. Our results suggest that feeding aging male rats a soy-rich diet results in improved agonist-mediated EDHF production and a generalized reduction in contractile force, which is partly due to elevated basal NO. Our data also suggest a prorelaxant role for endogenous H(2)O(2) in small arteries, which is modulated by a soy diet.  相似文献   

11.
alpha-lactorphin (Tyr-Gly-Leu-Phe) lowers blood pressure in conscious adult SHR. This tetrapeptide is originally released from milk protein alpha-lactalbumin by enzymatic hydrolysis. In order to evaluate the antihypertensive mechanisms of alpha-lactorphin, the effects of the tetrapeptide on vascular function were investigated in (30-35 weeks old) spontaneously hypertensive rats (SHR) with established hypertension and age-matched normotensive Wistar-Kyoto (WKY) rats in vitro. In addition, we studied the vascular effects of another structurally related tetrapeptide, beta-lactorphin (Tyr-Leu-Leu-Phe), which originates from milk protein beta-lactoglobulin. Endothelium-dependent relaxation to acetylcholine (ACh) was reduced in mesenteric arterial preparations of SHR as compared to those of WKY. In SHR, the ACh-induced relaxation was augmented by alpha-lactorphin or beta-lactorphin. The role of nitric oxide (NO) is suggested, since this improvement was abolished by the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Simultaneous potassium channel inhibitor tetraethylammonium (TEA) elicited no additional effect on the ACh-induced relaxation. The cyclooxygenase inhibitor diclofenac did not attenuate the augmented ACh relaxation induced by alpha-lactorphin or beta-lactorphin, suggesting that endothelial vasodilatory prostanoids were not involved in the effect of the tetrapeptides. Endothelium-independent relaxation to the NO donor sodium nitroprusside (SNP) was augmented in mesenteric arterial preparations of SHR by simultaneous beta-lactorphin. The tetrapeptides did not alter vascular responses in mesenteric arteries from WKY. In conclusion, both alpha-lactorphin and beta-lactorphin improved vascular relaxation in adult SHR in vitro. The beneficial effect of alpha-lactorphin was directed towards endothelial function, whereas beta-lactorphin also enhanced endothelium-independent relaxation.  相似文献   

12.
We investigated the progression of vascular dysfunction associated with the metabolic syndrome with and without hyperglycemia in lean, Zucker obese, and Zucker diabetic fatty (ZDF) rats. Responses of aorta and small coronary and mesenteric arteries were measured to endothelium-dependent and -independent vasodilators. Indices of oxidative stress were increased in serum from ZDF rats throughout the study, whereas values were increased in Zucker obese rats later in the study [thiobarbituric acid reactive substances: 0.45 +/- 0.02, 0.59 +/- 0.03 (P < 0.05), and 0.58 +/- 0.03 (P < 0.05) mug/ml in serum from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. Acetylcholine (ACh)-induced relaxation was not altered in vessels from lean animals from 8-40 wk. ACh-induced relaxation was nearly abolished in coronary arteries from 28- to 36-wk-old Zucker obese rats and by 16-36 wk in ZDF rats and was attenuated in aorta and mesenteric vessels from ZDF rats [%relaxation to 10 muM ACh: 72.2 +/- 7.1, 17.9 +/- 5.9 (P < 0.05), and 23.0 +/- 4.5 (P < 0.05) in coronary vessels; and 67.9 +/- 9.2, 50.1 +/- 5.5, and 42.3 +/- 4.7 (P < 0.05) in mesenteric vessels from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. The attenuated ACh-induced relaxation was improved when vessels were incubated with tiron, suggesting superoxide as a mechanism of endothelial dysfunction. Sodium nitroprusside-induced relaxation was not altered in aorta or coronary arteries and was potentiated in mesenteric arteries from Zucker obese rats. Our data suggest that diabetes enhances the progression of vascular dysfunction. Increases in indices of oxidative stress precede the development of dysfunction and may serve as a marker of endothelial damage.  相似文献   

13.

Background and Purpose

Tranilast, in addition to its capacity to inhibit mast cell degranulation, has other biological effects, including inhibition of reactive oxygen species, cytokines, leukotrienes and prostaglandin release. In the current study, we analyzed whether tranilast could alter endothelial function in rat mesenteric resistance arteries (MRA).

Experimental Approach

Acetylcholine-induced relaxation was analyzed in MRA (untreated and 1-hour tranilast treatment) from 6 month-old Wistar rats. To assess the possible participation of endothelial nitric oxide or prostanoids, acetylcholine-induced relaxation was analyzed in the presence of L-NAME or indomethacin. The participation of endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced response was analyzed by preincubation with TRAM-34 plus apamin or by precontraction with a high K+ solution. Nitric oxide (NO) and superoxide anion levels were measured, as well as vasomotor responses to NO donor DEA-NO and to large conductance calcium-activated potassium channel opener NS1619.

Key Results

Acetylcholine-induced relaxation was greater in tranilast-incubated MRA. Acetylcholine-induced vasodilation was decreased by L-NAME in a similar manner in both experimental groups. Indomethacin did not modify vasodilation. Preincubation with a high K+ solution or TRAM-34 plus apamin reduced the vasodilation to ACh more markedly in tranilast-incubated segments. NO and superoxide anion production, and vasodilator responses to DEA-NO or NS1619 remained unmodified in the presence of tranilast.

Conclusions and Implications

Tranilast increased the endothelium-dependent relaxation to acetylcholine in rat MRA. This effect is independent of the nitric oxide and cyclooxygenase pathways but involves EDHF, and is mediated by an increased role of small conductance calcium-activated K+ channels.  相似文献   

14.
To test the hypothesis that mechanically stretched arteries relax to endothelium-derived vasodilators, we challenged endothelium-intact dog femoral artery rings stretched from 1 to 16 g total initial tension (active force and passive elastic) with 10(-6) M acetylcholine (ACh), an endothelium-dependent dilator. The relaxation to 10(-6) M sodium nitroprusside (SNP), an endothelium-independent dilator, increased with the total initial tension. The relaxation to ACh averaged approximately 65% of the relaxation to SNP at total initial tensions of 4 to 16 g. To determine the nature of the endothelial-derived products involved, we compared the ACh-induced relaxation of stretched rings (6.5 +/- 0.2 g total initial tension) with rings chemically contracted with phenylephrine (Phe, 10(-7) to 10(-5) M) (6.5 +/- 0.3 g total initial tension). ACh-induced relaxation was evaluated before and after the inhibition of the synthesis of eicosanoids [cyclooxygenase (10(-5) M indomethacin) and lipoxygenase (10(-5) M nordihydroguariaretic acid)] and nitric oxide [nitric oxide synthase (10(-5) M Nw-nitro-L-arginine)]. The contribution of endothelium-derived hyperpolarizing factor (EDHF) was identified by blocking calcium-activated potassium channels (10(-8) M iberiotoxin). SNP (10(-6) M) relaxed stretched rings by 1.7 +/- 0.1 g and chemically-activated rings by 4.8 +/- 0.2 g. ACh relaxed stretched rings to 73 +/- 3% of the SNP relaxation and this was only attenuated in the presence of iberiotoxin. ACh relaxed Phe-activated rings to 60 +/- 3% of the SNP relaxation. This relaxation was attenuated by inhibition of the synthesis of nitric oxide and (or) eicosanoids. Therefore, ACh relaxed stretched rings through the release of EDHF whereas the relaxation of chemically activated rings to ACh involved multiple endothelium-derived vasodilators.  相似文献   

15.
Garland  C. J. 《Neurophysiology》2003,35(3-4):161-168
Endothelium-dependent hyperpolarizing factor (EDHF) underlies nitric oxide and prostacyclin-independent arterial relaxation. As the influence of EDHF increases with decreasing artery size, it plays an important role in vascular regulation. Initially suggested to represent a diffusible factor, EDHF is now thought to represent a variable input in different arteries from a factor(s) and the spread of hyperpolarizing current from the endothelium to the smooth muscle. Key to unravelling this pathway has been the demonstration that hyperpolarization within the endothelium can be blocked using a combination of the KCa channel blockers, apamin and charibdotoxin. As a consequence, the relaxation of vascular smooth muscle, which represents the end point of the EDHF pathway, is blocked. This review discusses the evidence that a differential distribution of ion channels between the smooth muscle and endothelial cells underlies the EDHF pathway. Also, that a diffusible factor, which may well be K ions released by the endothelium, acts alongside the spread of hyperpolarization through myoendothelial gap junctions to explain EDHF-evoked smooth muscle relaxation. While the relative importance of each of these two components can vary between arteries, together they can explain the EDHF phenomenon.  相似文献   

16.
We reported previously that acetylcholine (ACh)-induced endothelium-dependent relaxation of rat mesenteric microvessels depended both on nitric oxide (NO) and on a charybdotoxin (CTX)-sensitive endothelium-derived hyperpolarizing vasodilator. Cytochrome P450 (CYP)-dependent arachidonic acid metabolites act in some systems as hyperpolarizing vasodilators. We sought to quantitate contributions of such metabolites to the CTX-sensitive component of ACh-induced vasodilation in isolated rat mesenteric resistance arteries. ACh relaxed these vessels nearly completely (93.3+/-1.2%, n = 71); cyclooxygenase inhibition with indomethacin did not diminish this response (94.3+/-11.4%, n = 9). NO synthase inhibition with Nitro-L-arginine (NNLA) reduced relaxation by 30% (n = 54, p<0.05). Pretreatment of vessels with CYP inhibitors, either clotrimazole (CTM) or 17-octadecynoic acid (17-ODYA), or with selective K+ channel inhibitors, either tetraethyammonium acetate (TEA) or CTX, each led to similar small reductions in maximal relaxation (17%, 22%, 16%, and 9% respectively, n = 3-6). Combined pretreatment with NNLA + either (CTM or 17-ODYA) or (TEA or CTX) each led to similar maximal relaxations (52.2+/-4.8%, 50.6+/-9.2, 37.6+/-8.6%, and 44.1+/-11.5%, respectively, n = 6-35; p<0.05 for NNLA+[CTM or TEA or CTX] vs NNLA alone). Combined pretreatment with NNLA+CTM+(CTX or TEA) led to similar maximal relaxations (43.0+/-7.3%, 43.7+/-15%, n = 6-11) that did not differ from values in vessels pretreated with either NNLA+CTM or NNLA+(CTX or TEA). We conclude that the ACh-induced vasodilation was insensitive to cyclooxygenase inhibition, partially sensitive to NO synthase inhibition, and that the K+ channel blockers TEA and CTX identified the same minor component of ACh relaxation as did the CYP inhibitor CTM.  相似文献   

17.
Insulin resistance has been shown to be associated with increased blood pressure (BP). The sex hormones estrogen and testosterone have opposing effects in the development of increased BP. Since testosterone has been implicated in increased BP following insulin resistance, we have tried to dissect out the effects of insulin resistance on endothelium-dependent vasorelaxation in the presence and absence of testosterone. Both gonadectomized and sham-operated male Wistar rats fed with a high-fructose diet developed insulin resistance, but BP increased only in the sham-operated rats. Reintroduction of testosterone in vivo restored the increase in BP, thereby abolishing the protective effects of gonadectomy. Fructose feeding did not affect plasma testosterone levels. Insulin resistance induced endothelial dysfunction in the mesenteric arteries of sham-operated rats, which was prevented by gonadectomy, thus suggesting a key role for testosterone in the pathogenesis of secondary vascular complications. Subsequent to blocking the actions of endothelium-dependent hyperpolarizing factor (EDHF), relaxation to acetylcholine (ACh) was lower in sham-operated fructose-fed rats compared with other groups, suggesting the involvement of nitric oxide (NO) in vasorelaxation. Inhibition of NO synthesis nearly abolished the ACh-evoked relaxation in both fructose-fed groups, thus suggesting a testosterone-independent impairment of EDHF-mediated relaxation. The improvement in endothelial function following gonadectomy could be ascribed to a NO component, although plasma nitrite and nitrate levels were unchanged. In summary, testosterone is essential in vivo for the development of endothelial dysfunction and hypertension secondary to insulin resistance, suggesting a facilitatory role for testosterone in increasing BP in fructose-fed male rats.  相似文献   

18.
Previous studies indicate that release of superoxide radicals during coronary reperfusion following occlusion may relate to the loss of endothelium-dependent coronary arterial relaxation. We examined coronary arterial ring relaxation in dogs subjected to temporary circumflex (Cx) coronary artery occlusion and treated with saline or the superoxide radical scavenger superoxide dismutase (SOD). In dogs treated with saline, Cx coronary ring relaxation in response to leukotriene D4 (LTD4) and acetylcholine (ACh) was attenuated (p less than 0.01), but coronary relaxation in response to nitroglycerin was preserved, suggesting loss of endothelium-dependent relaxation following coronary reperfusion. In contrast, Cx coronary relaxation in response to LTD4 and ACh was preserved in the SOD-treated dogs (p less than 0.01 compared to saline-treated dogs). To further examine the role of superoxide radicals in the loss of endothelium-dependent relaxation, normal nonischemic canine coronary artery and rat aortic rings were exposed to a superoxide radical generating system of xanthine and xanthine oxidase in vitro. Xanthine plus xanthine oxidase treatment caused a significant (p less than 0.01) decrease in the relaxant effects of ACh. Pretreatment of rat aortic rings with SOD protected against the loss of ACh-induced relaxation. These observations suggest that release of superoxide radicals during reperfusion is the basis of loss of endothelium-dependent coronary arterial relaxation. Treatment with superoxide radical scavengers prior to coronary reperfusion protects against this loss.  相似文献   

19.
We used the partial protection exerted by suitable dosages of nicotinamide against the beta-cytotoxic effect of streptozotocin (STZ) to create an experimental diabetic syndrome in adult rats that appears closer to type II diabetes mellitus than other available animal models. The dosage of 230 mg/kg of nicotinamide given intraperitoneally 15 min before STZ administration (65 mg/kg i.v.) yielded animals with hyperglycemia (187.8 +/- 17.8 vs. 103.8 +/- 2.8 mg/dL in controls; P < 0.001) and preservation of plasma insulin levels. This study assessed the relationship between endothelial dysfunction and agonist-induced contractile responses in such rats. In the thoracic aorta, the acetylcholine (ACh) induced relaxation was significantly reduced and the noradrenaline (NA) induced contractile response was significantly increased in diabetic rats compared with age-matched control rats. In the superior mesenteric artery, the ACh-induced relaxation was similar in magnitude between diabetic and age-matched control rats; however, the ACh-induced endothelium-derived hyperpolarizing factor (EDHF) type relaxation was significantly weaker in diabetic rats than in the controls. The phenylephrine (PE) induced contractile response was not different between the two groups. The plasma concentration of NOx (NO2- + NO3-) was significantly lower in diabetic rats than in control rats. We conclude that vasomotor activities in conduit arteries are impaired in this type II diabetes model.  相似文献   

20.
Pulmonary arteries from the Madison (M) strain relax more in response to acetylcholine (ACh) than those from the Hilltop (H) strain of Sprague-Dawley rats. We hypothesized that differences in endothelial nitric oxide (NO) synthase (eNOS) expression and function, metabolism of ACh by cholinesterases, release of prostacyclin, or endothelium-derived hyperpolarizing factor(s) (EDHF) from the endothelium would explain the differences in the relaxation response to ACh in isolated pulmonary arteries. eNOS mRNA and protein levels as well as the NO-dependent relaxation responses to thapsigargin in phenylephrine (10(-6) M)-precontracted pulmonary arteries from the M and H strains were identical. The greater relaxation response to ACh in M compared with H rats was also observed with carbachol, a cholinesterase-resistant analog of ACh, a response that was not modified by pretreatment with meclofenamate (10(-5) M). N(omega)-nitro-L-arginine (10(-4) M) completely abolished carbachol-induced relaxation in H rat pulmonary arteries but not in M rat pulmonary arteries. Precontraction with KCl (20 mM) blunted the relaxation response to carbachol in M rat pulmonary arteries and eliminated differences between the M and H rat pulmonary arteries. NO-independent relaxation present in the M rat pulmonary arteries was significantly reduced by 17-octadecynoic acid (2 microM) and was completely abolished by charybdotoxin plus apamin (100 nM each). These findings suggest that EDHF, but not NO, contributes to the strain-related differences in pulmonary artery reactivity. Also, EDHF may be a metabolite of cytochrome P-450 that activates Ca(2+)-dependent K(+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号