首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Dietary copper (Cu) deficiency was produced in Swiss albino mice to determine the temporal relationship between depletion of Cu and changes in the cardiovascular and nervous system. Dams were placed on a Cu-deficient diet 4 days after parturition. Half the dams were provided with deionized water and their offspring are referred to as Cu-deficient (-Cu). Half the dams were given cupric sulfate in their drinking water (20 microg Cu/mL) and their offspring are referred to as Cu-adequate (+Cu). At 6 weeks of age a sample of the -Cu mice were repleted with CuSO(4). Mice were sampled 1 day after birth and at weekly intervals for 7 weeks. Both +Cu and -Cu mice grew at the same rate: birth weight increased 16-fold at 6 weeks of age. Liver Cu more than doubled between 1 and 7 days of age. At 2 weeks of age -Cu mice were anemic (lower hematocrit and hemoglobin) and had lower liver Cu and plasma ceruloplasmin activity compared to +Cu mice. Liver Fe was not elevated in -Cu mice until 2 weeks after anemia developed. At weaning first signs of altered catecholamine metabolism included elevation of dopamine in both heart and spleen. Norepinephrine concentrations and content, in contrast, were not both lowered in -Cu mice until 5 weeks of age. Heart weight was first elevated in -Cu mice at 6 weeks of age and relative weight (mg/g body wt) at 4 weeks of age. Liver Cu concentration was lower in 1-week repleted mice than in +Cu mice. Anemia preceded the development of cardiac hypertrophy and altered catecholamine levels in -Cu mice.  相似文献   

2.
Limiting dopamine beta-monooxygenase results in lower norepinephrine (NE) and higher dopamine (DA) concentrations in copper-deficient Cu- tissues compared to copper-adequate Cu+ tissues. Mice and rat offspring were compared to determine the effect of differences in dietary copper Cu deficiency started during gestation or lactation on catecholamine, NE and DA, content in brain and heart. Holtzman rat and Hsd:ICR (CD-1) outbred albino mouse dams were fed a Cu- diet and drank deionized water or Cu supplemented water. Offspring were sampled at time points between postnatal ages 12 and 27. For both rat and mouse Cu- tissue, NE and DA changes were greater at later ages. Though Cu restriction began earlier in rats than mice in the gestational model, brain NE reduction was more severe in Cu- mice than Cu- rats. Cardiac NE reduction was similar in Cu- rodents in the gestation models. In the lactation model, mouse catecholamines were altered more than rat catecholamines. Furthermore, following lactational Cu deficiency Cu- mice were anemic and exhibited cardiac hypertrophy, Cu- rats displayed neither phenotype. Within a species, changes were more severe and proportional to the length of Cu deprivation. Lactational Cu deficiency in mice had greater consequences than in rats.  相似文献   

3.
Weanling albino male mice rapidly develop biochemical signs of copper deficiency when fed a purified diet containing 0.5 mg Cu/kg. Plasma ceruloplasmin activity of copper-deficient (-Cu) mice was 5% of that of copper-adequate (+Cu) control mice after only 3 d on the diet. More gradual loss of organ (liver, spleen, and thymus) cytochrome c oxidase activity was observed during the next 4 wk. Body weight was equivalent between +Cu and -Cu mice, but thymus weight dropped faster in -Cu mice than +Cu mice. The number of antibody producing cells to sheep erythrocytes was lower in -Cu mice compared to +Cu mice after 17 d on the diet. Spleen cytochrome oxidase activity of -Cu mice was 50% of that of +Cu mice by 10 d on the diet. Mitogenic response of splenic and thymic lymphocytes to concanavalin A (con A) was not greatly different between +Cu and -Cu mice. Splenocytes from -Cu mice had a 3-fold higher thymidine incorporation rate in the absence of mitogen compared to +Cu mice. The depressed antibody and high mitogenic background responses of -Cu mice were similar to previous work with another strain (C58) of mice that had been started on copper-deficient treatment from birth. However, the normal proliferative response to con A stimulation in postweaning copper deficiency differs from the previous model. Mice of both studies were very copper-deficient as judged by liver copper levels. Timing of the copper-deficient treatment influences the manner in which copper deficiency alters the immune response.  相似文献   

4.
Copper deficiency was studied in mice to investigate an interaction between copper and ascorbic acid. Twelve-day-old mutant brindled mice that exhibited signs of copper deficiency were compared to their normal brothers as well as to age-matched suckling mice that were copper deficient (-Cu) because their dams were consuming a copper-deficient diet throughout gestation and lactation, and a fourth group of copper-supplemented ( + Cu) suckling mice that served as dietary controls. Dietary copper deficiency was also produced in older mice by beginning the treatment at birth and continuing for 7 wk. Organ ascorbate levels were determined by high performance liquid chromatography with electrochemical detection. Differences caused by diet and genetics were evident but age-dependent. Compared to controls, liver and kidney ascorbate levels did not change remarkably in young or old copper-deficient mice. Cardiac ascorbate levels were higher in 7-wk-old - Cu mice and lower in 12-d-old - Cu mice, despite hypertrophy in both cases. Spleen ascorbate levels were lower in older -Cu mice and higher in 12-d-old mice, but total spleen ascorbate reflected the hypertrophic and atrophic size in the older and younger -Cu mice, respectively. Brindled mutants had an extremely low level of ascorbate in spleen. Plasma ascorbate was lower in 7-wk-old - Cu mice. Reasons for the alterations in ascorbate levels are not known. Synthesis in liver from D-glucuronate was not altered by dietary copper deficiency in 7-wk-old mice. Synthesis was lower in livers from 12-d-old - Cu and brindled mice compared to control values. However, the difference correlated better with body weight of the mice rather than with degree of copper deficiency. Consequences of the altered organ levels of ascorbate in copper-deficient mice are not completely known.  相似文献   

5.
Perinatal copper (Cu) deficiency was studied by offering pregnant Sprague Dawley rats a basal diet low in copper, 0.44 mg/kg, and drinking water containing 0 (-Cu) or 20 (+Cu) mg Cu/L as CuSO4 starting at day 7 of gestation and continuing throughout lactation. To investigate dopamine-beta-monooxygenase (DBM) and tyrosine monooxygenase (TM) in adrenal gland and brain, offspring were weaned at Day 21 to treatments of their respective dams for 9 days. Offspring, 30 days old, of Cu-deficient (-Cu) dams were smaller, anemic, and had biochemical features characteristic of severe Cu deficiency. Adrenal DBM enzyme activity of 30-day-old -Cu rats was 40% higher than Cu-adequate (+Cu) rats and DBM protein levels, estimated by Western immunoblot, were 45% higher. Adrenal DBM mRNA levels of -Cu rats were 108% higher than +Cu rats. Adrenal TM protein levels of -Cu rats were 39% higher than +Cu rats. Hypothalamus DBM activity was significantly higher in -Cu than +Cu rats but no reproducible changes in DBM or TM protein levels could be detected by Western immunoblots. Diet history did not impact adrenal gland or hypothalamus levels of actin as detected on reblotted membranes. However, activity of the cuproenzyme Cu,Zn-superoxide dismutase was 50% lower and 30% lower, respectively, in extracts from rat adrenal gland and hypothalamus of -Cu than +Cu rats, indicating altered Cu status in the tissues studied. These data suggest that Cu deficiency is associated with increased formation of DBM and TM protein levels in adrenal gland. Further research will be required to determine the chemical signal responsible for this induction and if DBM or TM protein levels change in other tissues.  相似文献   

6.
To analyze the conflicting data on the relationship between sodium intake and catecholamine release, the effect of the duration of high sodium loading on cardiovascular response and catecholamine release was examined in conscious rats. Urinary excretions of norepinephrine (NE), and dopamine (DA) were measured frequently over a 4 week period. Male Wistar rats at 4 weeks of age were given a diet containing either basal (0.3%) or high (3.1%) sodium content. Systolic blood pressure was measured weekly by the tail cuff method. Twenty-four hour urine collections were made for analysis of catecholamines in metabolic cages every other day during the initial 2 weeks and once a week in the following 2 weeks of salt loading. High sodium intake resulted in a rise in blood pressure and a reduction in heart rate. Bradycardia was significant during the initial 2 weeks and not significant during the following 2 weeks after the initiation of salt loading. Urinary excretion of NE did not change during the initial 2 weeks of salt loading but increased significantly following the 2 week period after salt loading. Urinary excretion of DA increased diphasically, showing the first peak at 1 week after salt loading and the second peak at 4 weeks after the initiation of salt loading. These results suggest that the heart rate and urinary excretion of catecholamine are influenced by the duration of salt loading. When we estimate the effect of salt loading on cardiovascular response and urinary excretion of catecholamine, we should draw attention to the importance of the duration of salt loading, because this duration of time further elicites delayed response in the sympathetic nervous system.  相似文献   

7.
—Alterations in whole-brain and hypothalamic levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine (NE), dopamine (DA) as well as the turnover rates of NE and DA of adult male rats were analysed fluorometrically at either 3 weeks or 6 weeks following castration. Significant increases were observed in whole-brain (minus hypothalamus) 5-HIAA levels and hypothalamic DA levels, fractional rate constants and utilization rates at the 3 but not the 6 week intervals. Elevated levels of 5-HT were observed at both time intervals while an increase in whole-brain DA was seen only at the 6 week interval. Whole brain NE turnover rates of castrated animals did not differ significantly from those of sham-castrate control animals at either test interval. However, a tendency toward increased hypothalamic NE turnover rates was seen in the castrated animals. These biochemical changes resulted in decreased NE/5-HT and DA/5-HT ratios for the castrate rats as compared to controls. The results are discussed in relation to emotional and aggressive behavior and are interpreted as being consistent with the hypothesis purporting an inhibitory role for 5-HT and excitatory role for NE and DA in sex-specific behavior patterns including aggression.  相似文献   

8.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

9.
Accumulation of catecholamines in erythrocytes (RBC) was compared to rising plasma levels of catecholamines at weekly intervals following transplantation of pheochromocytoma (line P-259) in the New England Deaconess Hospital rat strain. Additionally changes were investigated during a 12 hour interval after tumor was established in PHEO rats. Starting 2 weeks after tumor implant, the concentrations of norepinephrine (NE) and dopamine (DA) in RBC paralleled and correlated strongly with rising levels of plasma NE and DA which were maximum by 4 weeks. Four to 6 weeks after implant, the RBC to plasma (L/P) concentration ratio of NE was 30% higher in PHEO rats than controls (p less than 0.05) indicating a shift in distribution of NE between the 2 circulating pools. Three measurements, 6 hours apart, showed that mean arterial pressure, plasma and RBC NE and DA concentrations were highest in AM in both PHEO and control groups. Shifts in DA were smaller and did not rise in PM as did NE suggesting DA may reflect tumor secretion and NE, tumor secretion plus sympathetic neuronal activity.  相似文献   

10.
The stable isotope tracer approach was explored for long-term investigations of copper turnover in the adult rat and mouse, with inductively coupled plasma mass spectrometry for isotope measurements. The isotopic measurement method permitted precision and accuracy of <1.0%, with an overall sample blank of <0.05 microg copper. Rats were fed a copper-deficient diet and deionized water with (+Cu) or without (-Cu) copper (20 microg/ml). Both groups underwent a single-day replacement of drinking water with 20 microg/ml of (65)Cu. Compared with the baseline isotope ratio ((65)Cu/(63)Cu) of 0.462 +/- 0.002, blood plasma ratios for the +Cu group on days 2, 7, and 14 postdosing were 0.702 +/- 0.021, 0.557 +/- 0.004, and 0.474 +/- 0.001, respectively. The corresponding data for liver were 1.652 +/- 0.018, 0.560 +/- 0.005, and 0.482 +/- 0.001, respectively. For the -Cu group, respective plasma ratios were 1.580 +/- 0.04. 0.917 +/- 0.02, and 0.664 +/- 0.01 for days 2, 7, and 14 postdosing, and the ratios for liver were 0.987 +/- 0.02, 0.876 +/- 0.04, and 0.739 +/- 0.03. Mice previously made copper deficient to varying degrees were given a single-day replacement with the label. When the 24-hour postdosing isotope ratios in the livers of these mice were correlated with the activity of plasma ceruloplasmin, a negative correlation (r = -0.85) was observed. Isotope enrichment in both rats and mice was greater in the copper-deficient animals compared with the controls.  相似文献   

11.
Effects of altered dietary zinc on levels of zinc, copper, magnesium, and calcium in organ and peripheral tissues were studied. When rats fed a zinc-deficient diet (1.3 μg Zn/g) for 28 d were compared with rats fed a control diet (37.5 μg Zn/g), levels of zinc were slightly lower in plasma, hair, and skin and 50% lower in femur and pancreas, whereas the levels of copper were higher in all tissue except plasma. Magnesium levels were higher than controls in the heart and lower in the spleen, whereas the calcium levels were lower in plasma, lung, spleen, kidney, and skin and strikingly higher in brain, hair, and femur. When rats fed a zinc-supplemented diet (1.0 mg Zn/g) were compared to the same conrols, levels of zinc in these were higher in all organs and peripheral tissues studied, except heart, lung, and liver; copper levels were higher in liver, kidney, and spleen; magnesium levels were significantly higher in the spleen, but were little affected in other tissues, although calcium levels were higher in pancreas, spleen, kidney, and skin and lower in plasma and hair. These data indicate that overall copper organ and peripheral tissue levels are affected inversely, and zinc and calcium levels directly, by zinc nutriture.  相似文献   

12.
Chemical sympathectomy with guanethidine (Gnt) selectively destroys the postganglionic noradrenergic neurons, whereas dopaminergic fibers and nonneural catecholamine-secreting cells are spared. As a result, the relative proportions of norepinephrine (NE), epinephrine (E), and dopamine (DA) in tissues can be differentially affected. This study was done to show the possible differences in the relative amount of catecholamines in some organs and tissues that might indicate the nature of the secretory cells from which they originate. The contents of NE, E, and DA were assessed in rats neonatally treated with Gnt. Gnt-treated rats showed significantly lower levels of NE (P < 0.01) in all tissues except the adrenal gland and paraganglia. Epinephrine was present in all tissues with mean levels below 25 ng/g, with the exception of the adrenal gland (700 microg/gland) and paraganglia (100 ng/g). Only the heart showed lower values in Gnt-treated rats. Mean DA levels were also very high in paraganglia (530 ng/g). In the Gnt-treated rats, DA levels fell practically to zero except in the duodenum, mesentery, and adrenal, whereas there were high levels in the paraganglia, which were significantly different from controls. The results suggest that the three catecholamines are contained mainly in noradrenergic sympathetic fibers of muscle, white adipose tissue, heart, liver, pancreas, and spleen. The duodenum and mesentery may have dopaminergic fibers or E- and DA-containing nonneural cells. Hepatic-vagus paraganglia contain all the catecholamines in relatively high amounts in nonneural cells, and Gnt treatment raises DA levels without affecting the other amines.  相似文献   

13.
We have measured, by a specific radioenzymoassay, the plasma concentration of dopamine (DA) and norepinephrine (NE) and by gas chromatography the urinary excretion of some catecholamine metabolites (HVA, homovanillic acid, DOPAC, dihydroxyphenyl acetic acid; VMA, vanilmandelic acid, and DOPEG, dihydroxyphenyl glycol) in three groups of rats with portal hypertension: cirrhotic rats (CR), rats with progressive portal hypertension (PPH) and rats with progressive hepatic congestion (PHC). The three groups of rats had portal hypertension. PPH and PHC had also intrahepatic hypertension. CR rats showed an increased urinary excretion of NE and DA metabolites with a normal plasma concentration of these catecholamines, suggesting an increased turnover of NE and DA in this experimental model. PPH animals had a high plasma DA concentration with a decreased urinary excretion of catecholamine metabolites. PHC showed high plasma DA and NE levels with normal or increased urinary excretion of its metabolites. These results suggest that an increased neural activity is present in the early stages of experimental cirrhosis in rats and this alteration does not seem directly related to the portal hypertension but perhaps to the intrahepatic hypertension or to the hepatocellular damage.  相似文献   

14.
Experiments performed with Holtzman rats demonstrated that brain iron (Fe) was lower by postnatal day 13 (P13) in pups born and nursed by dams that began copper-deficient (-Cu) treatment at embryonic day 7. Transcardial perfusion of P24-P26 males and females to remove blood Fe contamination revealed that brain Fe was still 20% lower in -Cu than +Cu rats. Estimated blood content of brain for -Cu rats was greater than for +Cu rats; for all groups, values ranged between 0.43 and 1.03%. Using group-specific data and regression analyses, r = 0.99, relating blood Fe to hemoglobin, brain Fe in non-perfused rats in a replicate study was lower by 33% at P13 and 39% at P24 in -Cu rats. Brain extracts from these rats and from P50 rats from a post-weaning model were compared by immunoblotting for transferrin receptor (TfR1). P24 brain -Cu/+Cu TfR1 was 3.08, suggesting that brains of -Cu rats were indeed Fe deficient. This ratio in P13 rats was 1.44, p < 0.05. No change in P50 -Cu rat brain TfR1 or Fe content was detected despite a 50% reduction in plasma Fe. The results suggest that brain Fe accumulation depends on adequate Cu nutriture during perinatal development.  相似文献   

15.
The effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was studied on dopamine (DA), norepinephrine (NE), serotonin (5HT) and γ-aminobutyric acid (GABA) neurons in mouse brain and on NE neurons of mouse heart. MPTP (45 mg/kg) was administered s.c. to mice twice daily for 2 consecutive days. This dosage regimen produced a decrease in the forebrain concentrations of DA and NE at 7 and 20 days after injection. In contrast, the forebrain concentrations of 5HT and GABA were not significantly decreased at either time. MPTP administration also produced a marked decrease in the uptake of 3H-DA into striatal slices and 3H-NE into cerebral cortical slices. In contrast, the uptake of 3H-NE into hypothalamic slices and the uptake of 3H-5HT into slices from several brain regions were not altered. MPTP initially reduced the concentration of NE in the heart, but unlike the persistent decreases in the forebrain concentrations of NE and DA, the NE concentration in the heart returned to control levels at approximately 20 days after MPTP administration. These results, showing that MPTP can produce a long lasting and selective decrease in the forebrain concentrations of NE and DA and in the uptake of radioactive DA and NE into brain slices, suggest that MPTP can cause the destruction of catecholamine neurons in mouse brain. In contrast, MPTP administration does not appear to produce long term changes in either 5HT or GABA neurons.  相似文献   

16.
The immunosuppressive agent, Cyclosporin A, (CsA) has been associated with nephrotoxicity and hypertension. The mechanism for these effects are not known. We therefore determined the levels of the catecholamines; epinephrine (EPI), norepinephrine (NE) and dopamine (DA) and some of their metabolites; epinine, dihydroxyphenyl-acetic acid (DOPAC), homovanillic acid (HVA), metanephrine (ME) and 3-methoxy-4-hydroxy-phenylglycol (MHPG) in the kidneys of rats treated intraperitoneally with either CsA (120 micrograms/kg/body wt/day) or control vehicle (1 ml olive oil/kg body wt/day). Six control or CsA treated rats were sacrificed at 1 hour or 24 hours after a single treatment or after 7 days of daily treatment. Renal catecholamine levels were determined using HPLC-amperometric detector. Treatment with CsA increased renal NE and EPI levels by 59% and 70% respectively within 1 hour. In the rats sacrificed 24 hours after treatment, renal NE, EPI and DA levels were similar to or less than the control levels. Treatment with CsA for 7 days resulted in marginal increases in renal NE (22%) and EPI (30%). These changes were associated with a significant decrease in the levels of catecholamine metabolites in the CsA treated kidneys as compared to the controls. The above findings suggest that increases in renal catecholamines may be involved in the CsA-induced hypertension and nephrotoxicity, perhaps by increasing renovascular resistance.  相似文献   

17.
目的:本研究通过研究多巴胺(Dopamine,DA)和去甲肾上腺素(Noradrenaline,NE)对感染性休克致急性肝损伤大鼠肝功能、炎性因子及NF-NF-κB p65蛋白的影响,以期为临床治疗提供一定的试验依据。方法:以48只SPF级健康雄性SD大鼠为研究对象,根据随机数字表法分为四组,每组12只,分别为对照组,脂多糖(lipopolysaccharide,LPS)组,NE组,DA+NE组。LPS、NE和DA+NE建立感染性休克模型,NE组静脉输注去甲肾上腺素,DA+NE组在NE组的基础上静脉输注DA。对各组大鼠肝功能、炎性因子和NF-κB p65蛋白水平进行检测。结果:与对照组相比,LPS、NE和DA+NE组血清天冬氨酸转氨酶(aspartate transaminase,AST)和丙氨酸转氨酶(alanine Transaminase,ALT)水平均显著升高(P<0.05),与LPS组相比,NE和DA+NE组大鼠血清AST和ALT均有不同程度的降低(P<0.05),与NE组相比,DA+NE组大鼠血清AST和ALT水平降低更显著(P<0.05)。与对照组相比,LPS、NE和DA+NE组血清白细胞介素6(interleukin-6,IL-6)和肿瘤坏死因子(tumornecrosis factor,TNF-α)水平均显著升高(P<0.05),与LPS组相比,NE和DA+NE组大鼠血清IL-6和TNF-α均有不同程度的降低(P<0.05),与NE组相比,DA+NE组大鼠血清IL-6和TNF-α水平降低更显著(P<0.05)。与对照组相比,LPS、NE和DA+NE组NF-κB p65蛋白表达水平均显著升高(P<0.05),与LPS组相比,NE和DA+NE组大鼠NF-κB p65蛋白表达均有不同程度的降低(P<0.05),与NE组相比,DA+NE组大鼠NF-κB p65蛋白表达水平降低更显著(P<0.05)。结论:多巴胺联合NE对对大鼠感染性休克所导致的急性肝损伤具有良好的保护作用。  相似文献   

18.
Transsynaptic Regulation of Olfactory Bulb Catecholamines in Mice and Rats   总被引:4,自引:2,他引:2  
Norepinephrine (NE), dopamine (DA), 3,4-dihydroxyphenylalanine (DOPA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured simultaneously by high performance liquid chromatography with electrochemical detection in extracts of olfactory bulbs at various intervals after chemical or surgical deafferentation. Chemical deafferentation of mice by intranasal irrigation with Triton X-100 or of rats by olfactory axotomy resulted in a rapid progressive decline of DA and DOPAC and an associated rise in NE in the olfactory bulb. However, after several weeks, these values returned to prelesion levels concomitant with reinnervation of the bulb by the afferent neurons. In contrast, deafferentation by procedures known to prevent reinnervation of the bulb by the afferent chemoreceptor neurons (i.e., a ZnSo4 solution in mice or a surgical procedure in rats) completely blocked the return to pre-lesion values of DA, DOPAC, and NE. The specificity of these effects was demonstrated by the inability of intranasal administration of the neurotoxin 6-hydroxydopamine to alter DA levels, resulting instead in a significant decline in olfactory bulb NE content. These data demonstrate that the DA content of the olfactory bulb can be influenced by either chemical or surgical modulation of the afferent pathway in two different species. This offers additional support for our hypothesis of transsynaptic regulation of intrinsic DA neurons of the bulb by the afferent olfactory chemoreceptor neurons.  相似文献   

19.
Twenty-four-hour urine was collected from normal and dystrophic mice and hamsters for catecholamine determinations. A new method of analysis was used whereby 3,4-dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NE), and epinephrine (E) were measured simultaneously. The procedure is based on a combination of liquid-solid extraction, cation exchange chromatography, and controlled potential electrochemistry. The results of these experiments indicated that while DA levels were similar in both normal and pathological animal urine, DOPA levels decreased slightly in the dystrophic mouse but not the hamster, and NE and E levels in dystrophic groups were two and four times greater than normal in both species. The data supports the concept of biochemical alterations in tissue other than muscle. While not necessarily supportive to catecholamine abnormality as the primary cause of muscular dystrophy, the present data cast doubt that this disease is a primary muscle disease.  相似文献   

20.
Iron deficiency (ID) disrupts brain dopamine (DA) and norepinephrine (NE) metabolism including functioning of monoamine transporters and receptors. We employed caudate microdialysis and no net flux (NNF) in post-weaning rats to determine if ID decreased the extraction fraction ( E d). Five micromolar quinpirole, a dopamine D2 receptor agonist, resulted in 80% decrease in extracellular DA and 45% higher E d in control animals. The D2 agonist had no effect on E d in ID animals despite a reduction in basal DA. DAT mRNA levels were reduced by 58% with ID, while DAT protein in ventral midbrain and caudate and membrane associated DAT were also reduced by ID. Carbidopa/ l -DOPA was administered to determine if elevated extracellular DA in ID was due to increased release. The DA response to l -DOPA in ID rats was 50% smaller and delayed, whereas the NE response was threefold higher. The caudate concentration of NE was also elevated in ID. Elevated dopamine-β-hydroxylase activity in ID provides a tentative explanation for the increased NE response to l -DOPA. These experiments provide new evidence that ID results in altered synthesis and functioning of DAT and perhaps suggests some compensatory changes in NE metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号