首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme fructose- 1,6-diphosphatase (FDPase), involved in the reductive cycle of the pentose phosphate pathway, has been purified from spinach leaves by heating (30 min at 60°), “salting out” with ammonium sulphate (between 30–70% of saturation), filtration through Sephadex G-100 and G-200, fractionation on DEAE-52 cellulose and preparative electrophoresis on polyacrylamide gel. Filtration through DEAE-cellulose led to the isolation of two active fractions (fractions I and II) with very close MWs and isoelectric points. By electrophoresis on acrylamide gel, both fractions gave two active fractions (fractions Ia-Ib and IIa-IIb). The fractions with low electrophoretic migration rate—Ib and IIb—are stable in acid and neutral pH, have a MW between 90 000 and 110 000 and constitute the native form of the photosynthetic enzyme. The fractions of faster migration rate—Ia and IIa-originate from the corresponding fractions Ib and IIb under alkaline conditions, show half the MW of the respective fractions, and behave as subunits of the original dimer form. Measured by electrofocusing, the four active fractions have isoclectric points in the range 4·10–4.30.  相似文献   

2.
Multiple forms of neutral α-glucosidase (pH optima, 6.0~6.5) were purified from pig duodenal mucosa by a procedure including Triton X-100 treatment, fractionation with ammonium sulfate, fractionation with ethyl alcohol, DEAE-cellulose column chromatography and preparative polyacrylamide disc gel electrophoresis. All of the α-glucosidases, Ia, IIa, Ib and IIb, were found to be homogeneous on polyacrylamide disc gel electrophoresis. The molecular weights, isoelectric points and optimum temperatures of α-glueosidases Ia and IIa were 145,000~150,000, pH 3.5~3.7 and 55°C, respectively, and both enzymes were stable up to 55°C on treatment at pH 6.0 for 15 min; whereas those of the other two α-glucosidases, Ib and IIb, were 80,000, pH 4.0~4.1 and 65°C, respectively, and both enzymes were stable up to 70°C on the same treatment. The Km values of enzyme IIa for maltose, maltotriose and amylose were 1.72mm, 0.37 mm and 1.67mg/ml, while those of enzyme IIb were 3.33 mm, 2.61 mm and 11.8 mg/ml, respectively. All enzyme hydrolyzed α-1,4-, α-1,3- and α-1,2-glucosidic linkages in substrates, but showed no activity on sucrose or isomaltose. Enzymes IIa and IIb hydrolyzed phenyl α-maltoside to glucose and phenyl α-glucoside, and maltotriose was formed as the main α-glucosyltransfer product from maltose. It was revealed that two types of neutral α-glucosidases having no activity toward sucrose or isomaltose existed in pig duodenal mucosa, and that one type comprised α-glucosidase having both maltose- and amylaceous α-glucan-hydrolyzing activities and the other type heat-stable maltooligosaccharidases which hydrolyzed amylaceous α-glucan weakly.  相似文献   

3.
Beverley R. Green  Edith L. Camm 《BBA》1982,681(2):256-262
Reelectrophoresis of the oligomer form (CP II1) of the chlorophyll ab light-harvesting complex (LHC) from the green alga Acetabularia yields two green bands which run at the position typical of the monomer (CP II). The upper green band (CP II1) is enriched in the 27 kDa polypeptide of the LHC, while the lower is enriched in the 26 kDa polypeptide. The fact that both bands have both chlorophyll (Chl) a and b, and in the same ratio, implies that the LHC is made up of two Chl ab proteins. Neither of these bands can be attributed to the Chl ab complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432). Resolution of CP II1 and CP II2 of spinach can be obtained if sucrose gradient fractions of an octylglucoside extract are subjected to SDS-polyacrylamide gel electrophoresis. CP II1 and CP II2 are interpreted as being fundamental subunits of the light-harvesting complex as it is defined on SDS-polyacrylamide gels.  相似文献   

4.
The antenna composition of the Photosystems IIα, IIβ and I was studied in tobacco chloroplasts. Absorbance spectra, recorded at 4 K, were analyzed for the wild type and the mutants Su/su and Su/su var. Aurea, containing higher concentrations of the photosystems. With chloroplasts of Su/su we measured the action spectra of the three photosystems from 625 to 690 nm. Above 675 nm absorption by Photosystem I dominated. This sytem had a maximum at 678 nm and a shoulder at 660 nm. Of the long-wavelength chlorophyll a forms, absorbing at 690, 697 and 705 nm at 4 K, which are generally assigned to Photosystem I, the 697 nm form occurred in an amount of four molecules per reaction center of Photosystem I in each type of chloroplast. The Photosystem IIα spectrum was characterized by maxima at 650 and 672 nm, showing clearly the participation of the chlorophyll a and b containing light-harvesting complex. In the mutants the light-harvesting complex has a chlorophyll a to chlorophyll b ratio of more than 1; the amount of the 672 nm chlorophyll a was normal, whereas the amount of chlorophyll b was markedly decreased in the mutants relative to the wild type. The Photosystem IIβ spectrum mainly consisted of a band at 683 nm.  相似文献   

5.
Phosphorylation in vitro of the light-harvesting chlorophyll ab protein complex associated with Photosystem II (LHCII) resulted in the lateral migration of a subpopulation of LHCII from the grana to the stroma lamellae. This movement was characterized by a decrease in the chlorophyll ab ratio and an increase in the 77 K fluorescence emission at 681 nm in the stroma lamellae following phosphorylation. Polyacrylamide gel electrophoresis indicated that the principal phosphoproteins under these conditions were polypeptides of 26–27 kDa. These polypeptides increased in relative amount in the stroma lamellae and decreased in the grana during phosphorylation. Pulse/chase experiments confirmed that the polypeptides were labelled in the grana and moved to the stroma lamellae in the subsequent chase period. A fraction at the phospho-LHCII, however, was unable to move and remained associated with the grana fraction. LHCII which moved out into the stroma lamellae effectively sensitized Photosystem I (PS I), since the ability to excite fluorescence emission at 735 nm (at 77 K) by chlorophyll b was increased following phosphorylation. These data support the ‘mobile antenna’ hypothesis proposed by Kyle, Staehelin and Arntzen (Arch. Biochem. Biophys. (1983) 222, 527–541) which states that the alterations in the excitation-energy distribution induced by LHCII phosphorylation are, in part, due to the change in absorptive cross-section of PS II and PS I, resulting specifically from the movement of LHCII antennae chlorophylls from the PS-II-enriched grana to the PS-I-enriched stroma lamellae.  相似文献   

6.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

7.
Beyer EM 《Plant physiology》1975,56(2):273-278
The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of 14C2H4 into the tissue and (b) the conversion of 14C2H4 to 14CO2, was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to 14C2H4 markedly reduced both a and b. Increasing the 14C2H4 concentration from 0.14 to over 100 μl/l progressively increased the rate of a and b with tissue incorporation being greater than 14C2H4 to 14CO2 conversion only below 0.3 μl/l 14C2H4. Reduction of the O2 concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO2 (5%) severely inhibited 14C2H4 to 14CO2 conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during 14C2H4 treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b.  相似文献   

8.
9.
The present study shows that small admixtures of one chlorophyll a (Chla) molecule per several hundred lipid molecules have strong destabilizing effect on lipid bilayers. This effect is clearly displayed in the properties of the Lα-HII transformations and results from a Chla preference for the HII relative to the Lα phase. Chla disfavors the lamellar liquid crystalline phase Lα and induces its replacement with inverted hexagonal phase HII, as is consistently demonstrated by DSC and X-ray diffraction measurements on phosphatidylethanolamine (PE) dispersions. Chla lowers the Lα-HII transition temperature (42 °C) of the fully hydrated dipalmitoleoyl PE (DPoPE) by ∼ 8 °C and ∼ 17 °C at Chla/DPoPE molar ratios of 1:500 and 1:100, respectively. Similar Chla effect was recorded also for dielaidoyl PE dispersions. The lowering of the transition temperature and the accompanying significant loss of transition cooperativity reflect the Chla repartitioning and preference for the HII phase. The reduction of the HII phase lattice constant in the presence of Chla is an indication that Chla favors HII phase formation by decreasing the radius of spontaneous monolayer curvature, and not by filling up the interstitial spaces between the HII phase cylinders. The observed Chla preference for HII phase and the substantial bilayer destabilization in the vicinity of a bilayer-to-nonbilayer phase transformation caused by low Chla concentrations can be of interest as a potential regulatory or membrane-damaging factor.  相似文献   

10.
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.  相似文献   

11.
An apparent enigma during platelet aggregation is that increased glycogenolysis occurs despite a fall in cyclic AMP levels. Activation by a classical cascade is therefore unlikely, and an alternative stimulus for phosphorylase a formation was sought. It was found that low levels of Ca2+ markedly activate phosphorylase b kinase from human platelets, with a Ka of 0.89 μM Ca2+, which is similar to that for the skeletal muscle enzyme. The kinase activity is unstable, and on enzyme ageing there is a 50% loss in activity with the Ka decreasing to 0.33 μM Ca2+.In unstimulated platelets, phosphorylase a was 13.3% of total measured activity, and glycogen synthetase I was 32.3%. Aggregation induced by ADP did not change the percentage of I synthetase, while increasing that for phosphorylase a. Dibutyryl cyclic AMP did, as expected, increase the percentage of both phosphorylated enzymes.These findings suggest that the natural activator of platelet glycogenolysis during aggregation is Ca2+, which directly stimulates phosphorylase b kinase without altering glycogen synthetase activity. The cyclic AMP-dependent protein kinase does not appear to be involved.  相似文献   

12.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

13.
(1) Two populations of reaction centers in the chromatophore membrane can be distinguished under some conditions of initial redox poise (300 mV < Eh < 400 mV): those which transfer a reducing equivalent after the first flash from the secondary quinone (QII) of the reaction center to cytochrome b of the ubiquinone-cytochrome c2 oxidoreductase; and those which retain the reducing equivalent on Q?II until a second flash is given. These two populations do not exchange on a time scale of tens of seconds. (2) At redox potentials higher than 400 mV, Q?II generated after the first flash is no longer able to reduce cytochrome b-560 even in those reaction centers associated with an oxidoreductase. Under these conditions, doubly reduced QII generated by a second flash is required for cytochrome b reduction, so that the QII effectively functions as a two-electron gate into the oxidoreductase at these high potentials. (3) At redox potentials below 300 mV, although the two populations of QII are no longer distinguishable, cytochrome b reduction is still dependent on only part of the reaction center population. (4) Proton binding does not oscillate under any condition tested.  相似文献   

14.
The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.  相似文献   

15.
Fasting newborn and growing young rats, though capable of synthesizing liver glycogen when fed, are, unlike adult fasted animals, insensitive to glucocorticoid stimulation of the rate of glucose and lactate incorporation into glycogen. Hormone resistance parallels a decreased liver capability for the synthase b to a conversion reaction up to 2 days after birth, after which the b to a transformation becomes adult type in nature. A comparison of the level of glucose 6-phosphate in liver to the effect of the activator on the synthase activity from newborn rat shows that the enzyme has a greater affinity toward the activator than comparable enzyme from the adult, suggesting the presence of an intermediate metabolite-regulated form of synthase in neonatal liver.  相似文献   

16.
The structures of [(CuS2CT)2dppm]2 (I) (T = o-tolyl; dppm = bis(diphenylphosphino)methane) and [CuS2CTdppm]2 (II) have been determined by X-ray methods. Crystals of I are monoclinic, space group P21/n, with a = 15.163(4), b = 18.691(5), c = 13.478(4) Å, β = 96.81(3)°, Z = 2; crystals of II are orthorhombic. space group Pccn, with a = 23.267(4), b = 13.016(3), c = 20.731(5) Å, Z = 4. The structures of I and II have been solved by Patterson and Fourier methods and refined by full-matrix least-squares to R = 0.082 for I and 0.092 for II. The structure of I consists of centrosymmetric tetranuclear complexes in which two pairs of Cu atoms are triply bridged by a dppm ligand and two dithiocarboxylate groups from the dithio-o-toluate ligands. These last behave differently: one of them through a sulphur atom is also bonded to a Cu atom of the other pair so forming a tetranuclear complex. The Cu atoms of each pair show different coordination: Cu(1) displays a distorted trigonal and Cu(2) a distorted trigonal pyramidal geometry. The structure of II consists of dimers, in which each copper atom, doubly bridged by two dppm ligands, completes a distorted trigonal pyramidal coordination through two sulphur atoms from dithio-o-toluate anions acting as chelating ligands. In both compounds the phenyl group of the dithio-o-toluate anions is orthogonal to the corresponding CS2 group. Both complexes give methyldithio-o-toluate in high yields by reaction with methyl iodide.  相似文献   

17.
1H and 13C nuclear-magnetic-resonance spectroscopy and functional-group analysis were used to determine the molecular structure of an isolated metabolite (IIb) of trimethyl-lysine as 3-hydroxy-N6-trimethyl-lysine, an important intermediate in the conversion of trimethyl-lysine into trimethylammoniobutyrate and carnitine [Hoppel, Cox & Novak (1980) Biochem. J. 188, 509–519]. Functional-group analysis revealed the presence of a primary amine and reaction of metabolite (IIb) with periodate yielded 4-N-trimethylammoniobutyrate as a product, showing 2,3-substitution on the molecule and suggesting that the 3-substitution on the molecule may be an alcohol ([unk]CH–OH), amine ([unk]CH[unk]–NH2) or carbonyl ([unk]C=O) functional group. 1H integration ratios, 1H and 13C chemical-shift data and 1H and 13C signal multiplicities from the sample (IIb) were used to complete the identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. For example, the proton multiplet at δ 4.2p.p.m. and doublet at δ 4.1p.p.m., positions representative of amine or alcohol substitution on methylene carbon atoms, integration ratios of 1:1:2:9:4 and a positive ninhydrin test suggest 3-hydroxy-N6-trimethyl-lysine as the molecular structure for metabolite (IIb). 13C chemical-shift data obtained from the sample (IIb) and compared with several model compounds (trimethylammoniohexanoate, trimethyl-lysine and 3-hydroxylysine) resulted in generation of the spectrum of the metabolite and allowed independent identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. The 1H spectrum of erythro- and threo-3-hydroxylysine are presented for comparison, and the 1H and 13C n.m.r. spectra of the erythro-isomer support this analysis.  相似文献   

18.
G. Renger  H.J. Eckert 《BBA》1981,638(1):161-171
The role of the protein matrix embedding the functionally active redox components of Photosystem II reaction centers has been studied by investigating the effects of procedures which modify the structure of proteins. In order to reduce the influence of the electron transport involving secondary donor and acceptor components, Triswashed chloroplasts were used which are completely deprived of their oxygen-evolving capacity. The functional activity was detected via absorption changes, reflecting at 334 and 690 or 834 nm the turnover of the primary plastoquinone acceptor, X320, and of the photochemically active chlorophyll a complex, Chl aII, respectively, and at 520 nm the transient formation of a transmembrane electric potential gradient. Under repetitive flash excitation of Tris-washed chloroplasts it was found that: (a) The relaxation kinetics at 690 nm become significantly accelerated in the presence of external electron donors. (b) Trypsin treatment blocks to a high degree the turnover of Chl aII and X320 unless exogenous acceptors are present, which directly oxidize X320?, such as K3Fe(CN)6. (c) In the presence of K3Fe(CN)6 the recovery kinetics of Chl aII and X320 are retarded markedly by trypsin, followed by a progressive decline in the extent thereof. (d) 2-(3-Chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), known to reduce the lifetime of S2 and S3 in normal chloroplasts, significantly accelerates the recovery of Chl aII. 10 μs kinetics are observed which correspond with the electron-transfer rate from D1 to Chl a+II. ANT 2p simultaneously retards the decay kinetics of X320? and of the electrochromic absorption changes. (e) The kinetic pattern of the electrochromic absorption changes is also affected by the salt content of the suspension. Under dark-adapted conditions, the 10 μs relaxation kinetics of the 834 nm absorption change due to the first flash are hardly affected by mild trypsinization of 5–10 min duration, whereas the amplitude decreases by approx. 30%. The data obtained in Tris-washed chloroplasts could consistently be interpreted as a modification of the back reaction between X320? and Chl a+II which is caused solely by a change in the reactivity of X320 due to trypsin-induced degradation of the native X320-B apoprotein. Furthermore, ADRY agents are inferred to stimulate cyclic electron flow, which leads to reduction of D+1 between the flashes. A simplified scheme is discussed which describes the functional organization of the reaction center complex.  相似文献   

19.
Stereospecific hydroxylation of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-trans-and 3-C-cis-(methoxycarbonylmethylene)-α-D-ribo-hexofuranose (2 and 3, respectively), with potassium permanganate in pyridine afforded 3-C-[S- and R-hydroxy-(methoxycarbonyl)methyl]-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose, (6 and 7, respectively), in a combined yield, after chromatography, of 43%. Selective formation of monomethanesulfonates (9a and 10a) and p-toluenesulfonates (9b and 10b), followed by treatment with sodium azide and reduction of the azide, afforded the methyl 2-D-(and 2-L-)(3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-yl)-glycinates (12a and 13a, respectively). Basic hydrolysis of the latter compounds yielded 2-D- and 2-L-(3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-yl)glycine (12b and 13b, respectively). The structures of the glycosyl amino acids were correlated with that of L-alanine by circular dichroism.  相似文献   

20.
The syntheses and comparative studies of the spectral, voltammetry and spectroelectrochemical properties of new manganese phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the peripheral (complex 3a) and non-peripheral positions (complex 3b) are reported. Solution electrochemistry of complex 3a showed quasi-reversible metal-based (MnIIIPc−2/MnIIPc2, E1/2 = −0.07 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.78 V vs. Ag|AgCl) reductions, but no ring-based oxidation. However, complex 3b showed weak irreversible ring-oxidation signal (Ep = +0.86 vs. Ag|AgCl). Reversible metal-based (MnIIIPc−2/MnIIPc−2, E1/2 = −0.04 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.68 V vs. Ag|AgCl) reductions were also observed for complex 3b. Spectroelectrochemistry was used to confirm these processes. Reduction process involving the metal (MnIIIPc−2/MnIIPc−2) was associated with the formation of manganese μ-oxo complex in complex 3a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号