首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Gram-negative, non-endospore-forming, rod shaped, strictly aerobic, moderately halophilic bacterium, designated strain M9BT, was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain M9BT were found to be motile and produce colonies with an orange-yellow pigment. Growth was determined to occur between 5 and 20 % (w/v) NaCl and the isolate grew optimally at 7.5–10 % (v/w) NaCl. The optimum pH and temperature for growth of the strain were determined to be pH 7.0 and 35 °C, respectively, while it was able to grow over pH and temperature ranges of 6–8 and 25–45 °C, respectively. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain M9BT is a member of the genus Marinobacter. The closest relative to this strain was found to be Marinobacter hydrocarbonoclasticus MBIC 1303T with a similarity level of 97.7 %. DNA–DNA hybridization between the novel isolate and this phylogenetically related species was 13 ± 2 %. The major cellular fatty acids of the isolate were identified as C16:0, C19:1 ω6c, C18:1 ω9c and C16:1 ω9c. The polar lipid pattern of strain M9BT was determined to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and three phospholipids. Ubiquinone 9 (Q-9) was the only lipoquinone detected. The G+C content of the genomic DNA of this strain was determined to be 58.6 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that this strain represents a novel species of the genus Marinobacter, for which the name Marinobacter persicus sp. nov. is proposed. The type strain of Marinobacter persicus is strain M9BT (=IBRC-M 10445T = CCM 7970T = CECT 7991T = KCTC 23561T).  相似文献   

2.
A Gram-negative, motile, rod-shaped, endospore-forming bacterial strain, designated as NCCP-36T, was isolated from the compost of fruit and vegetable wastes. The strain NCCP-36T grew within a temperature range of 10–45?C (optimum 28?C) and a pH range of 6.5–8.5 (optimum 7.0), and its cells tolerated <50 mM boron (optimum growth without boron) and 0–5 % NaCl (w/v) in tryptic soya broth medium. Based on comparative analysis of 16S rRNA gene sequence, strain NCCP-36T showed the highest similarity to Lysinibacillus sinduriensis BLB-1T (97.52 %) and L. xylanilyticus XDB9T (96.96 %), and <97 % similarity with other closely related taxa. However, DNA–DNA relatedness between strain NCCP-36T and the closely related type strains of genus Lysinibacillus was ≤37 %. Phylogenetic and chemotaxonomic analyses [major polar lipids: diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phospholipids; predominant menaquinone: MK-7; major cellular fatty acids: iso-C15:0, antieso-C15:0, and iso-C16:0; DNA G+C contents: 37 mol %; Lys-Asp (type A4α) in cell-wall peptidoglycans as diagnostic amino acids] also support the affiliation of strain NCCP-36T to genus Lysinibacillus. Based upon DNA–DNA relatedness as well as distinctive chemotaxonomic, phylogenetic, and genotypic data, we conclude that strain NCCP-36T belongs to a novel species of genus Lysinibacillus, for which the name Lysinibacillus composti sp. nov. is proposed. The type strain is NCCP-36T (JCM 18777T?=?KCTC 13796T?=?DSMZ 24785T).  相似文献   

3.
A novel bacterial strain designated 9PNM-6T was isolated from an abandoned lead–zinc ore mine site in Meizhou, Guangdong Province, China. The isolate was found to be Gram-negative, rod-shaped, orange-pigmented, strictly aerobic, oxidase- and catalase-positive. Growth occurred at 0–4 % NaCl (w/v, optimum, 0 %), at pH 6.0–8.0 (optimum, pH 7.0) and at 15–32 °C (optimum, 28–30 °C). Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 9PNM-6T belongs to the genus Sphingomonas, with the highest sequence similarities with Sphingomonas jejuensis NBRC 107775T (99.7 %), Sphingomonas koreensis KCTC 2882T (95.1 %) and Sphingomonas dokdonesis KCTC 12541T (95.1 %). The chemotaxonomic characteristics of strain 9PNM-6T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was identified as ubiquinone Q-10, the major polyamine as sym-homospermidine, and the major cellular fatty acids as C18:1 ω7c, C16:0, C16:1 ω7c and/or C16:1 ω6c and C14:0 2-OH. The major polar lipids are sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatideylcholine, an unidentified phospholipid and four unidentified aminolipids. The genomic DNA G+C content of strain 9PNM-6T was determined to be 69.2 ± 0.6 mol%. Based on comparative analyses of morphological, physiological and chemotaxonomic data, and levels of DNA–DNA relatedness values, strain 9PNM-6T is considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas gimensis sp. nov. (Type strain 9PNM-6T = GIMCC 1.655T = CGMCC 1.12671T = DSM 27569T) is proposed.  相似文献   

4.
A Gram-negative, rod-shaped, non-spore-forming aerobic bacterium, motile with a single polar flagellum, strain JLT2005T, was isolated from surface seawater collected from the East China Sea and formed ivory white colonies on a rich organic medium. The strain was positive for catalase, oxidase, and urease. It grew in the presence of 0–12 % (w/v) NaCl (optimum 5 %), at 20–35 °C (optimum 25 °C), or at pH 6–10 (optimum pH 9). The major fatty acids (>10 %) were C18:1ω7c, C19:0ω8c cyclo, C16:0, and C18:0. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, and five unidentified glycolipids. Ubiquinone-10 and Ubiquinone-11 were present as the major quinones. The DNA G+C content was 74.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain JLT2005T belongs to the genus Pelagibacterium in the family Hyphomicrobiaceae, class Alphaproteobacteria. The closest neighbors were Pelagibacterium halotolerans B2T (98.7 % similarity) and Pelagibacterium luteolum 1_C16_27T (97.1 % similarity). DNA–DNA relatedness values of strain JLT2005T with P. halotolerans B2T and with P. luteolum 1_C16_27T were 31.6 and 25 %. Evidence from genotypic, chemotaxonomic, and phenotypic data shows that strain JLT2005T represents a novel species of the genus Pelagibacterium, for which the name Pelagibacterium nitratireducens sp. nov is proposed. The type strain is JLT2005T (=CGMCC 1.10829T =JCM 17767T).  相似文献   

5.
A Gram-positive, thermophilic, strictly aerobic bacterium, designated WP-1T, was isolated from a sediment sample from a hot spring in Fujian province of China and subjected to a polyphasic taxonomic study. Cells of strain WP-1T were rods (~0.6–0.8 × 2.5–3.5 μm) and motile by means of peritrichous flagella. Endospores were ellipsoidal in terminal or subterminal positions. Strain WP-1T grew at 37–60 °C (optimum 42–45 °C), 0–3 % NaCl (optimum 1 %, w/v) and pH 3.0–9.0 (optimum pH 6.5–7.0). The predominant menaquinone was MK-7. The major fatty acids were anteiso-C15:0, iso-C16:0, C16:0 and anteiso-C17:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two glycolipids, two unidentified phospholipids and two unknown polar lipids. The cell-wall peptidoglycan contained meso-diaminopimelic acid (meso-DAP). The G + C content of the genomic DNA was 52.5 %. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain WP-1T is a member of the genus Paenibacillus and exhibited sequence similarity of 99.3 % to Paenibacillus macerans DSM 24T and both strains represented a separate lineage from all other Paenibacillus species. However, the level of DNA–DNA relatedness between strain WP-1T and P. macerans DSM 24T was 34.0 ± 4.7 %. On the basis of phylogenetic, physiological and chemotaxonomic analysis data, strain WP-1T is considered to represent as a novel species of the genus Paenibacillus, for which the name Paenibacillus thermophilus sp. nov., is proposed, with the type strain WP-1T (=DSM 24746T = JCM 17693T = CCTCC AB 2011115T).  相似文献   

6.
The strain designated as AB21T was isolated from chloroethylenes contaminated soil. Cells are gram-negative, aerobic, non-spore-forming, and motile rods. Phylogenetic analysis based on 16S rRNA gene sequence showed that it belonged to the genus Rhizobium, and was closely related to Rhizobium sullae IS 123T (97.4 %), Rhizobium yanglingense SH 22623T (97.2 %), Rhizobium gallicum R 602spT (97.1 %), Rhizobium alamii GBV 016T (97.0 %), and Rhizobium monogolense USDA 1844T (97.0 %). It showed less than 97 % identity with the remaining Rhizobium species. This novel isolate grew optimally at 25–37 °C (optimum, 30 °C) and pH 6–9 (optimum, pH 8.0). It grew in the presence of 0–4 % (w/v) NaCl, tolerating a 4 % (w/v) NaCl. DNA–DNA hybridization experiment shows less than 53 % binding with closely related Rhizobium. Predominant quinone is ubiquinone (Q-10). The major fatty acids were summed feature 8 (composed of C18:1 ω7c/C18:1 ω6c), C19:0 cyclo ω8c, and C16:0. The G+C molar content is 62.5 mol%. Based on the polyphasic analysis, strain AB21T is referred to be a novel species of the genus Rhizobium for which the name Rhizobium halotolerans sp. nov. is proposed. The type strain is AB21T (=KEMC 224-056T = JCM 17536T).  相似文献   

7.
Two moderately halophilic, facultatively aerobic, motile bacteria with flagella, designated strains 10-C-3T and 30-C-3, were isolated from jeotgal, a traditional Korean fermented seafood. Cells of the strains were observed to be ovoid-rods showing catalase- and oxidase-positive reactions and production of creamy-pink pigments. Growth of strain 10-C-3T was observed at 15–35 °C (optimum, 25–30 °C), at pH 5.5–9.0 (optimum, pH 7.0–7.5), and in the presence of 3–15 % (w/v) salts (optimum: 5–10 %). The two strains were found to contain C18:1 ω7c, C16:0, summed feature 3 (as defined by the MIDI system, comprising C16:1 ω7c and/or C16:1 ω6c), and C12:0 3-OH as the major cellular fatty acids. The G+C contents of the genomic DNA of strains 10-C-3T and 30-C-3 were determined to be 63.2 and 63.1 mol%, respectively and the respiratory quinone detected was ubiquinone 9 (Q-9) only. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains 10-C-3Tand 30-C-3 formed a distinct phyletic lineage within the genus Halomonas and are most closely related to Halomonas fontilapidosi 5CRT with 95.2 % of 16S rRNA sequence similarity. Strains 10-C-3Tand 30-C-3 shared 99.2 % of 16S rRNA gene sequence similarity and their DNA–DNA relatedness value was 96.6 ± 0.9 %. On the basis of phenotypic, chemotaxonomic and molecular features, strains 10-C-3Tand 30-C-3 represent a novel species of the genus Halomonas, for which the name Halomonas cibimaris sp. nov. is proposed. The type strain is 10-C-3T (= KACC 14932T = JCM 16914T).  相似文献   

8.
A Gram-negative, aerobic, motile by means of single polar flagellum, short rod-shaped marine bacterium, designated strain E418T, was isolated from the spines on the body surface of starfish Acanthaster planci in the Xisha islands, China. Cells of strain E418T were found to grow optimally at pH 7–8, at 25–37 °C, and in the presence of 2–5 % (w/v) NaCl. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain E418T is a member of the genus Pseudoalteromonas. The closest relative to this strain was found to be P. ruthenica LMG 19699T, with a similarity level of 97.7 %. DNA relatedness between the novel isolate and this phylogenetically related species was 57.4 %. Strain E418T decomposed Tween 80, gelatin, and casein, but was unable to decompose starch and grow on DNase Agar. The cellular fatty acid profile consisted of significant amounts of C16:1ω7c/C16:1ω6c, C18:1ω7c/C18:1ω6c, C16:0, and C17:1ω8c. The G+C content of DNA of this strain was determined to be 46.7 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that strain E418T represents a novel species of the genus Pseudoalteromonas, for which the name Pseudoalteromonas xishaensis sp. nov. is proposed. The type strain of P. xishaensis is strain E418T (DSM 25588T = NBRC 108846T = CCTCC AB 2011177T).  相似文献   

9.
A Gram-stain negative, motile, rod-shaped bacterium, designated strain WM-2T, was isolated from a forest soil in Sihui City, South China, and characterized by means of a polyphasic approach. Growth occurred with 0–5 % (w/v) NaCl (optimum 0–1 %) and at pH 5.0–10.5 (optimum pH 8.5) and 4–40 °C (optimum 30 °C) in Luria–Bertani medium. Comparative 16S rRNA gene sequence analyses showed that strain WM-2T is a member of the genus Pseudomonas and most closely related to P. guguanensis, P. oleovorans subsp. lubricantis, P. toyotomiensis, P. alcaliphila and P. mendocina with 97.1–96.6 % sequence similarities. In terms of gyrB and rpoB gene sequences, strain WM-2T showed the highest similarity with the type strains of the species P. toyotomiensis and P. alcaliphila. The DNA–DNA relatedness values of strain WM-2T with P. guguanensis and P. oleovorans subsp. lubricantis was 48.7 and 37.2 %, respectively. Chemotaxonomic characteristics (the main ubiquinone Q-9, major fatty acids C18:1 ω7c/C18:1 ω6c, C16:0 and C16:1 ω7c/C16:1 ω6c and DNA G+C content 65.2 ± 0.7 mol%) were similar to those of members of the genus Pseudomonas. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminophospholipid, an unknown phospholipid and five unknown lipids. According to the results of polyphasic analyses, strain WM-2T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas sihuiensis sp. nov. is proposed. The type strain is WM-2T (=KCTC 32246T=CGMCC 1.12407T).  相似文献   

10.
A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 112T, was isolated from cabbage rhizosphere in Beijing, China. The strain was found to grow at 10–40 °C and pH 4–11, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on a fragment of the full-length 16S rRNA gene sequence revealed that strain 112T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarities were found between strain 112T, Paenibacillus sabinae DSM 17841T (97.82 %) and Paenibacillus forsythiae DSM 17842T (97.22 %). However, the DNA–DNA hybridization values between strain 112T and the type strains of these two species were 10.36 and 6.28 %, respectively. The predominant menaquinone was found to be menaquinone 7 (MK-7). The major fatty acids were determined to be anteiso-C15:0 and C16:0. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The DNA G+C content was determined to be 55.4 mol%. On the basis of its phenotypic characteristics, 16S rRNA gene sequence analysis and the value of DNA–DNA hybridization, strain 112T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus brassicae sp. nov. is proposed. The type strain is 112T (= ACCC 01125T = DSM 24983T).  相似文献   

11.
Two Gram-stain negative, moderately halophilic, aerobic, motile bacteria, designated strains YIM QH88T and YIM QH103, were isolated from the Qiaohou salt mine in Yunnan, southwest China. Cells of the strains were observed to be rod-shaped and produce creamy-coloured colonies. Growth of the two strains was observed at 10–45 °C (optimum 25–37 °C), at pH 6.0–10.0 (optimum 7.0–8.0), and in the presence of 0.5–20 % (w/v) NaCl (optimum 2–6 %). The two strains were found to contain summed feature 8 (C18:1 ω7c/ω6c), C19:0 cyclo ω8c and C16:0 as the major cellular fatty acids. The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unknown phospholipid. The G+C content of the genomic DNA of strains YIM QH88T and YIM QH103 were determined to be 64.6 and 64.2 mol%, respectively, and the predominant respiratory quinone detected was ubiquinone 9. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains YIM QH88T and YIM QH103 formed a distinct lineage within the genus Halomonas and were most closely related to Halomonas pantelleriensis DSM 9661T with 97.3 and 97.5 % of 16S rRNA sequence similarity respectively. The DNA–DNA hybridization relatedness value for strains YIM QH88T and YIM QH103 was 95.2 ± 0.8 %. The levels of DNA–DNA relatedness between each of these two strains and the type strains of phylogenetically closely related Halomonas species were clearly below 70 %. On the basis of their phylogenetic analysis, DNA–DNA hybridization relatedness, phenotypic and chemotaxonomic characteristics, strains YIM QH88T and YIM QH103 should be classified as a novel species of the genus Halomonas, for which the name Halomonas qiaohouensis sp. nov. is proposed. The type strain is YIM QH88T (=DSM 26770T =CCTCC AB 2012965T).  相似文献   

12.
A slightly halophilic bacterium (strain NEAU-ST10-25T) was isolated from saline–alkaline soils in Zhaodong City, Heilongjiang Province, China. The strain is a Gram-negative, aerobic motile rod. It accumulates poly-β-hydroxyalkanoate and produces exopolysaccharide. It produces beige-yellow colonies. Growth occurs at NaCl concentrations (w/v) of 0–15 % (optimum 3 %), at temperatures of 4–60 °C (optimum 35 °C) and at pH 6–12 (optimum pH 9). Its G+C content is 53.8 mol%. Phylogenetic analyses based on the separate 16S rRNA gene and concatenation of the 16S rRNA, gyrB and rpoD genes indicate that it belongs to the genus Halomonas in the class Gammaproteobacteria. The most phylogenetically related species is Halomonas alkaliphila DSM 16354T, with which strain NEAU-ST10-25T showed 16S rRNA, gyrB and rpoD gene sequence similarities of 99.2, 82.3 and 88.2 %, respectively. The results of DNA–DNA hybridization assays showed 60.47 ± 0.69 % DNA relatedness between strain NEAU-ST10-25T and H. alkaliphila DSM 16354T, 42.43 ± 0.37 % between strain NEAU-ST10-25T and Halomonas venusta DSM 4743T and 30.62 ± 0.43 % between strain NEAU-ST10-25T and Halomonas hydrothermalis DSM 15725T. The major fatty acids are C18:1 ω7c (62.3 %), C16:0 (17.6 %), C16:1 ω7c/C16:1 ω6c (7.7 %), C14:0 (2.9 %), C12:0 3-OH (2.8 %), C10:0 (2.1 %) and C18:1 ω9c (1.6 %) and the predominant respiratory quinone is ubiquinone 9 (Q-9). The proposed name is Halomonas zhaodongensis, NEAU-ST10-25T (=CGMCC 1.12286T = DSM 25869T) being the type strain.  相似文献   

13.
A moderately halophilic bacterium, designated strain 9-2T, was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5–14 % (w/v) (optimum, 7–10 %, w/v), at temperatures of 10–45 °C (optimum 25–30 °C) and at pH 5.0–10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2T is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502T (96.68 %), Halomonas campaniensis DSM 1293T (96.46 %), Halomonas ventosae DSM 15911T (96.27 %) and Halomonas kenyensis DSM 17331T (96.27 %). The DNA–DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2T and H. desiderata DSM 9502T. The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2T is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2T (=DSM 26881T = CGMCC 1.12467T).  相似文献   

14.
A Gram stain-negative, aerobic and rod-shaped bacterium, strain DY22T, was isolated from a deep-sea sediment collected from the east Pacific Ocean. The isolate was found to grow in the presence of 0–20.0 % (w/v) NaCl and at pH 4.5–8.5; optimum growth was observed with 0.5–2.0 % (w/v) NaCl and at pH 5.0–7.0. Chemotaxonomic analysis showed the presence of ubiquinone-9 as predominant respiratory quinone and C16:0, C19:0 ω8c cyclo and C12:0 3-OH as major cellular fatty acids. The genomic DNA G+C content was determined to be 59.6 mol%. Comparative 16S rRNA gene sequence analysis revealed that the novel isolate belongs to the genus Salinicola. Strain DY22T exhibited the closest phylogenetic affinity to the type strain of Salinicola salarius with 97.2 % sequence similarity and less than 97 % sequence similarity with respect to other Salinicola species with validly published names. The DNA–DNA reassociation values between strain DY22T and S. salarius DSM 18044T was 52 ± 4 %. On the basis of phenotypic, chemotaxonomic and genotypic data, strain DY22T represents a novel species of the genus Salinicola, for which the name Salinicola peritrichatus sp. nov. (type strain DY22T = CGMCC 1.12381T = JCM 18795T) is proposed.  相似文献   

15.
A taxonomic study was carried out on strain 22II-S10sT, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase and catalase positive, rod shaped and motile by subpolar flagella. The isolate was capable of gelatine hydrolysis but unable to reduce nitrate to nitrite or degrade Tween 80 or aesculin. Growth was observed at salinities of 0.5–18 % (optimum, 2–12 %), at pH of 3–10 (optimum, 7) and at temperatures of 10–41 °C (optimum 28 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S10sT belongs to the genus Roseivivax, with highest sequence similarity to Roseivivax halodurans JCM 10272T (97.2 %), followed by Roseivivax isoporae LMG 25204T (97.0 %); other species of genus Roseivivax shared 95.2–96.7 % sequence similarity. The DNA–DNA hybridization estimate values between strain 22II-S10sT and the two type strains (R. halodurans JCM 10272T and R. isoporae LMG 25204T) were 22.00 and 21.40 %. The principal fatty acids were identified as Summed Feature 8 (C18:1 ω7c/ω6c) (67.4 %), C18:0 (7.2 %), C19:0 cyclo ω8c (7.1 %), C18:1 ω7c 11-methyl (6.8 %) and C16:0 (5.9 %). The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, a glycolipid and three phospholipids were present. The G+C content of the chromosomal DNA was determined to be 67.5 mol%. The combined genotypic and phenotypic data show that strain 22II-S10sT represents a novel species within the genus Roseivivax, for which the name Roseivivax atlanticus sp. nov. is proposed, with the type strain 22II-S10sT (= MCCC 1A09150T = LMG 27156T).  相似文献   

16.
A novel moderately thermophilic bacterium, strain STGHT, was isolated from Severo-Stavropolskoye underground gas storage (Russia). Cells of strain STGHT were spore-forming motile straight rods 0.3 μm in diameter and 2.0–4.0 μm in length having a Gram-positive cell wall structure. The temperature range for growth was 36–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0–7.5. Growth of strain STGHT was observed at NaCl concentrations ranging from 0 to 4.0 % (w/v) with an optimum at 1.0 % (w/v). Strain STGHT grew anaerobically by reduction of nitrate, thiosulfate, S0 and AQDS using a number of complex proteinaceous compounds, organic acids and carbohydrates as electron donors. Nitrate was reduced to nitrite; thiosulfate and sulfur were reduced to sulfide. It also was able to ferment pyruvate, glucose, fructose, and maltose. The strain STGHT did not grow under aerobic conditions during incubation with atmospheric concentration of oxygen but was able to microaerobic growth (up to 10 % of oxygen in gas phase). The G+C content of DNA of strain STGHT was 34.8 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belongs to the class Bacilli. We propose to assign strain STGHT to a new species of a novel genus Tepidibacillus fermentans gen. nov., sp.nov. The type strain is STGHT (=DSM 23802T, =VKM B-2671T).  相似文献   

17.
A Gram-positive, facultative anaerobic, motile, endospore-forming rod strain, designated DX-4T, was isolated from an electrochemically active biofilm. Growth occurred at 30–65 °C (optimum 55 °C), at pH 6.0–8.5 (optimum pH 7.0–7.5) and with <6 % (w/v) NaCl. Cells were catalase- and oxidase-positive. The main respiratory quinone was MK-7, the predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannoside, and unidentified aminophospholipid, the DNA G+C content was 38.6 mol% and the major fatty acids (>5 %) were iso-C15:0 (38.9 %), iso-C17:0 (30.5 %), iso-C16:0 (5.6 %), and anteiso-C17:0 (5.2 %). The phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain DX-4T is a member of the genus Bacillus. The results of phenotypic, chemotaxonomic, and genotypic analyses clearly indicated that strain DX-4T represents a novel species, for which the name Bacillus borbori sp. nov. is proposed. The type strain is DX-4T (= CCTCC AB2012196T = KCTC 33103T).  相似文献   

18.
A Gram-staining-negative, rod-shaped and motile with several polar flagellums bacterium, designated WM-3T, was isolated from a rice paddy soil in South China. Growth occurred with 0–3.0 % (w/v) NaCl (optimum 2.0 %), at pH 5.5–9.0 (optimum pH 7.0) and at 25–42 °C (optimum 30–37 °C) in liquid Reasoner’s 2A medium. Analysis of the 16S rRNA gene and gyrB gene sequences revealed that strain WM-3T was most closely related to the type strains of the species Pseudomonas linyingensis and Pseudomonas sagittaria. Its sequence similarities with P. linyingensis CGMCC 1.10701T and P. sagittaria JCM 18195T were 97.4 and 97.3 %, respectively, for 16S rRNA gene, and were 94.1 and 94.2 %, respectively, for gyrB gene. DNA–DNA hybridization between strain WM-3T and these two type strains showed relatedness of 35.6 and 30.9 %, respectively. G+C content of genomic DNA was 69.4 mol%. The whole-cell fatty acids mainly consisted of C16:0 (30.0 %), C16:1 ω6c and/or C16:1 ω7c (19.3 %) and C18:1 ω6c and/or C18:1 ω7c (16.3 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain WM-3T belongs to genus Pseudomonas but represents a novel species, for which the name Pseudomonas oryzae sp. nov. is proposed. The type strain is WM-3T (=KCTC 32247T =CGMCC 1.12417T).  相似文献   

19.
The taxonomic status of a bacterium, strain NCCP-246T, isolated from rhizosphere of Vigna mungo, was determined using a polyphasic taxonomic approach. The strain NCCP-246T can grow at 16–37 °C (optimum 32 °C), at pH ranges of 6–8 (optimum growth occurs at pH 7) and in 0–4 % (w/v) NaCl. Phylogenetic analysis based upon on 16S rRNA gene sequence comparison revealed that strain NCCP-246T belonged to genus Sphingobacterium. Strain NCCP-246T showed highest similarity to the type strain of Sphingobacterium canadense CR11T (97.67 %) and less than 97 % with other species of the genus. The DNA–DNA relatedness value of strain NCCP-246T with S. canadense CR11T and Sphingobacterium thalpophilum JCM 21153T was 55 and 44.4 %, respectively. The chemotaxonomic data revealed the major menaquinone as MK-7 and dominant cellular fatty acids were summed feature 3 [C16:1 ω7c/C16:1 ω6c] (37.07 %), iso-C15:0 (28.03 %), C16:0 (11.85 %), C17:0 cyclo (8.84 %) and C14:0 (2.42 %). The G+C content of the strain was 39.2 mol%. On the basis of DNA–DNA hybridization, phylogenetic analyses, physiological and, biochemical data, strain NCCP-246T can be differentiated from the validly named members of genus Sphingobacterium and thus represents as a new species, for which the name, Sphingobacterium pakistanensis sp. nov. is proposed with the type strain NCCP-246T (= JCM18974 T = KCTC 23914T).  相似文献   

20.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号