首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iu IA Kisliakov 《Biofizika》1975,20(3):511-514
A mathematical model of carotid arteries is constructed from the known experimental data. Passive properties of the vascular wall are characterized by an alternating module of elasticity, the active ones by the specific power of muscle contraction. Its maximum value (0,023 n/m-3) is shown to be reached with intravascular pressure 190 mm Hg. The dependence of inner radius on the power of muscle contraction is studied at different values of intravascular pressure. It is shown that theactive properties of carotid arteries are essentially determined by their passive properties and depend on the stretching of the vessel wall.  相似文献   

2.
Passive (papaverine induced) and active (spontaneous pressure induced) biomechanical properties of ischemic and nonischemic rat middle cerebral arteries (MCAs) were studied under pressurized conditions in vitro. Ischemic (1 h of occlusion), contralateral, and sham-operated control MCAs were isolated from male Wistar rats (n = 22) and pressurized using an arteriograph system that allowed control of transmural pressure (TMP) and measurement of lumen diameter and wall thickness. Three mechanical stiffness parameters were computed: overall passive stiffness (beta), pressure-dependent modulus changes (E(inc,p)), and smooth muscle cell (SMC) activity-dependent changes (E(inc,a)). The beta-value for ischemic vessels was increased compared with sham vessels (13.9 +/- 1.7 vs. 9.1 +/- 1.4, P < 0.05), indicating possible short-term remodeling due to ischemia. E(inc,p) increased with pressure in the passive vessels (P < 0.05) but remained relatively constant in the active vessels for all vessel types, indicating that pressure-induced SMC contractile activity (i.e., myogenic reactivity) in cerebral arteries leads to the maintenance of a constant elastic modulus within the autoregulatory pressure range. E(inc,a) increased with pressure for all conditions, signifying that changes in stiffness are influenced by SMC activity and vascular tone.  相似文献   

3.
Quantifying the time course of load-induced changes in arterial wall geometry, microstructure, and properties is fundamental to developing mathematical models of growth and remodeling. Arteries adapt to altered pressure and flow by modifying wall thickness, inner diameter, and axial length via marked cell and matrix turnover. To estimate particular biomaterial implications of such adaptations, we used a 4-fiber family constitutive relation to quantify passive biaxial mechanical behaviors of mouse carotid arteries 0 (control), 7-10, 10-14, or 35-56 days after an aortic arch banding surgery that increased pulse pressure and pulsatile flow in the right carotid artery. In vivo circumferential and axial stretches at mean arterial pressure were, for example, 11% and 26% lower, respectively, in hypertensive carotids 35-56 days after banding than in normotensive controls; this finding is consistent with observations that hypertension decreases distensibility. Interestingly, the strain energy W stored in the carotids at individual in vivo conditions was also less in hypertensive compared with normotensive carotids. For example, at 35-56 days after banding, W was 24%, 39%, and 47% of normal values at diastolic, mean, and systolic pressures, respectively. The energy stored during the cardiac cycle, W(sys)-W(dias), also tended to be less, but this reduction did not reach significance. When computed at normal in vivo values of biaxial stretch, however, W was well above normal for the hypertensive carotids. This net increase resulted from an overall increase in the collagen-related anisotropic contribution to W despite a decrease in the elastin-related isotropic contribution. The latter was consistent with observed decreases in the mass fraction of elastin.  相似文献   

4.
The purpose of the study was to investigate changes in passive mechanical properties of the soleus muscle of the rat during the first year of life. These mechanical changes were quantified at a macroscopic (whole muscle) and a microscopic level (fiber) and were correlated with biochemical and morphological properties. Three passive mechanical tests (a relaxation test, a ramp stretch test and a stretch release cycle test) with different amplitudes and velocities were performed on isolated soleus muscles and fibers in rats at ages 1 (R1), 4 (R4) and 12 (R12) months. Mechanical parameters (dynamic and static forces, stresses and normalized stiffness) were recorded and measured. The morphological properties (size of fibers and muscles) for the three groups of rats were assessed by light microscopy which allowed us to observe the evolution of the fiber type (I, IIc and IIa) in the belly region and along the longitudinal axis of the muscle. In addition, biochemical analyses were performed at the level of the whole muscle in order to determine the collagen content. The results of the passive mechanical properties between the macroscopic (muscle) and microscopic (fiber) levels showed a similar evolution. Thus, an increase of the dynamic and static forces appeared between 1 and 4 months while a decrease of the passive tension occurred between 4 and 12 months. These mechanical changes were correlated to the morphological properties. In addition, the size of the three fibers type which grew with age could explain the increase of forces between 1 and 4 months. Furthermore, the biochemical analysis showed an increase of the collagen content during the same period which could also be associated with the increase of the passive forces. After 4 months, the passive tension decreased while the size of the fiber continued to increase. The biochemical analysis showed a decrease of the collagen content after 4 months, which could explain the loss of passive tension in the whole muscle. Concerning the similar loss at the fiber level, other assumptions are required such as a myofibril loss process and an increase of intermyofibrillar spaces. The originality of this present study was to compare the passive mechanical properties between two different levels of anatomical organization within the soleus muscle of the rat and to explain these mechanical changes in terms of biochemical and morphological properties.  相似文献   

5.
Localized heating or cooling is expanding the clinical procedures used to treat cardiovascular diseases. Advantageous implementation and development of these methods are linked indissolubly to a deeper understanding of the arterial response to combined mechanical and thermal loads. Despite this, the basic thermomechanical behavior of human blood vessels still remains largely unknown, primarily due to the lack of appropriate experimental data. In this work, the influence of temperature on the passive behavior of human carotid arteries was studied in vitro by means of inflation tests. Eleven carotid segments were tested in the range 0-200 mmHg at four different temperatures of 17, 27, 37, and 42 degrees C. The results show that the combined change of temperature and stress has a dramatic effect on the dilatation coefficient of the arterial wall, which is shifted from negative to positive depending on the stress state, whereas the structural stiffness of the arterial wall does not change appreciably in the range of temperatures tested.  相似文献   

6.
Cerebrovascular disease continues to be responsible for significant morbidity and mortality. There is, therefore, a pressing need to understand better the biomechanics of both intracranial arteries and the extracranial arteries that feed these vessels. We used a validated four-fiber family constitutive relation to model passive biaxial stress-stretch behaviors of basilar and common carotid arteries and we developed a new relation to model their active biaxial responses. These data and constitutive relations allow the first full comparison of circumferential and axial biomechanical behaviors between a muscular (basilar) and an elastic (carotid) artery from the same species. Our active model describes the responses by both types of vessels to four doses of the vasoconstrictor endothelin-1 (10(-10)M, 10(-9)M, 10(-8)M, and 10(-7)M) and predicts levels of smooth muscle cell activation associated with basal tone under specific in vitro testing conditions. These results advance our understanding of the biomechanics of intracranial and extracranial arteries, which is needed to understand better their differential responses to similar perturbations in hemodynamic loading.  相似文献   

7.
With aging, large arteries become stiffer and systolic blood pressure consequently increases. Less is known, however, about the age-related change in mechanics of small resistance arteries. The aim of this study was to determine whether aging plays a role in the stiffening of the small mesenteric arteries of rats. Intra-arterial systolic, diastolic, mean and pulse pressures were measured in male Wistar rats aged 2, 4, 15 and 26 months. The passive mechanical properties of the wall of isolated perfused and pressurized arterial segments of mesenteric small arteries were also investigated. Intra-arterial systolic, diastolic and mean blood pressures tended to decrease with age and were significantly lower in the oldest rats (26-month-old group). Pulse pressure was significantly higher in the 15- and 26-month-old groups than in the two younger groups. Under isobaric conditions, increasing age is associated with an outward hypertrophic remodeling of the mesenteric arteries. Under relaxed conditions, incremental distensibility in response to increasing intravascular pressure did not change with aging. As a function of strain (under isometric conditions), stress shifted to the left as age increased, indicating an age-related vascular stiffening. Under isobaric conditions or in relation to wall stress, the elastic modulus was greater in the adult 15-month-old rats than in the younger rats. These findings suggest that distensibility seems to be preserved with aging, despite stiffness of the wall components, probably by arterial wall geometric adaptation, which limits the pulse pressure damage. It is interesting to note that elastic modulus in mesenteric arteries from the oldest rats (26-month-old), examined in relation to wall stress and intravascular pressure, did not differ from that of the youngest rats, thus suggesting that elasticity of wall components had been restored.  相似文献   

8.
The goal of this study was to determine the effects of microgravity on myofilament protein expression and both passive and active length-force relationships in carotid and femoral arteries. Microgravity was simulated by 20-day hindlimb unweighting (HU) in Wistar male rats, and carotid and femoral artery segments were isolated from both HU and control (CTL) rats for Western blot and length-force analysis. Western blots revealed that HU significantly decreased myosin light chain-20 (MLC-20) protein levels in both carotid and femoral arteries and decreased myosin heavy chain (MHC) in femoral artery. alpha-Actin levels were not altered by HU treatment in either artery. Length-force analysis demonstrated that HU did not change either passive or active length-force relationships in the femoral artery. HU-treated arterial rings developed significantly less force to 100 mM K(+) than CTL, but optimal lengths were identical. In the carotid artery, length-active force curves were identical for both CTL and HU; however the length-passive force curve for HU-treated rings exhibited a steeper slope than CTL, suggesting decreased compliance of the artery wall. In conclusion, our data suggest that the HU-induced decreases in both MLC-20 and MHC in femoral artery are responsible for the decreased contraction to 100 mM K(+) in HU-treated femoral artery rings. In the carotid artery, the HU-induced decrease in vessel wall compliance may counter any decrease in contractility caused by the decreased MLC-20 levels.  相似文献   

9.
10.
The viscoelastic properties of porcine carotid tissue are investigated in this work. Experimental uniaxial stress relaxation tests along the longitudinal and circumferential directions of the vessel were performed for carotid strips extracted from 10 vessels. Directional and local differences - distal versus proximal position - in the tissue behavior were investigated. The experimental tests reveal a highly anisotropic, non-linear viscoelastic response and local dependence of the samples. The carotid artery shows anisotropic relaxation behavior for both proximal and distal samples. The highest stress relaxation was found in the circumferential tensile test for the highest applied strain at the distal position. For the circumferential direction, the relaxation stress was higher than in the longitudinal being at its highest in the distal position. These facts show that the stress relaxation is higher in the distal than in the proximal position. However, there are no differences between both positions in the longitudinal direction. In addition, a constitutive law that takes into account the fundamental features, including non-linear viscoelasticity, of the arterial tissue is proposed. The present results are correlated with the purely elastic response and the microstructural analysis of the tissue by means of histological quantification presented in a previous study.  相似文献   

11.
To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Rupture tests were conducted. Inner diameter and wall thickness were measured by echo tracking during pressure inflation from 10 to 145 mmHg. Distensibility and incremental elastic modulus were computed. At 10 mmHg, mean diameter of decellularized arteries was 5.38 mm, substantially higher than controls (4.1 mm), whereas decellularized and control arteries reached the same internal diameter (6.7 mm) at 145 mmHg. Wall thickness decreased 16% for decellularized and 32% for normal arteries after pressure was increased from 10 to 145 mmHg. Decellularized arteries withstood pressure >2,200 mmHg before rupture. At 145 mmHg, decellularization reduced compliance by 66% and increased incremental elastic modulus by 54%. Removal of cellular elements from media led to changes in arterial dimensions. Collagen fibers engaged more rapidly during inflation, yielding a stiffer vessel. Distensibility was therefore significantly lower (by a factor of 3) in decellularized than in normal vessels: reduced in the physiological range of pressures. In conclusion, decellularization yields vessels that can withstand high inflation pressures with, however, markedly different geometrical and biomechanical properties. This may mean that the potential use of a decellularized artery as a scaffold for the creation of xenografts may be compromised because of geometrical and compliance mismatch.  相似文献   

12.
13.
14.
Proximal pulmonary artery (PA) stiffening is a strong predictor of mortality in pulmonary hypertension. Collagen accumulation is mainly responsible for PA stiffening in hypoxia-induced pulmonary hypertension (HPH) in mouse models. We hypothesized that collagen cross-linking and the type I isoform are the main determinants of large PA mechanical changes during HPH, which we tested by exposing mice that resist type I collagen degradation (Col1a1 $^\mathrm{R/R})$ and littermate controls (Col1a1 $^{+/+})$ to hypoxia for 10 days with or without $\beta $ -aminopropionitrile (BAPN) treatment to prevent cross-link formation. Static and dynamic mechanical tests were performed on isolated PAs with smooth muscle cells (SMC) in passive and active states. Percentages of type I and III collagen were quantified by histology; total collagen content and cross-linking were measured biochemically. In the SMC passive state, for both genotypes, hypoxia tended to increase PA stiffness and damping capacity, and BAPN treatment limited these increases. These changes were correlated with collagen cross-linking ( $p<0.05$ ). In the SMC active state, hypoxia increased PA dynamic stiffness and BAPN had no effect in Col1a1 $^{+/+}$ mice ( $p<0.05$ ). PA stiffness did not change in Col1a1 $^\mathrm{R/R}$ mice. Similarly, damping capacity did not change for either genotype. Type I collagen accumulated more in Col1a1 $^{+/+}$ mice, whereas type III collagen increased more in Col1a1 $^\mathrm{R/R}$ mice during HPH. In summary, PA passive mechanical properties (both static and dynamic) are related to collagen cross-linking. Type I collagen turnover is critical to large PA remodeling during HPH when collagen metabolism is not mutated and type III collagen may serve as a reserve.  相似文献   

15.
Microsurgical anastomosis of rat carotid arteries with the CO2 laser   总被引:2,自引:0,他引:2  
In order to further evaluate the role of lasers in microvascular tissue closure, we modified an existing CO2 surgical laser (Xanar XA-20) by adding a partially reflecting mirror to attenuate the beam. This allowed the laser to operate at an output of approximately 100 mW, which was appropriate to achieve microvascular closures. In each of 43 rats, one carotid artery was transected and then anastomosed with standard suture technique with 10 to 12 simple interrupted sutures of size 10-0 Ethilon nylon suture (Ethicon, Inc.). The opposite carotid in each rat was anastomosed by the placement of three stay sutures followed by the application of laser irradiation to the tissue between the stay sutures at 90 to 100 mW, spot size of 0.2 mm, pulse duration 0.2 seconds, approximately 20 to 30 pulses per anastomosis. In vivo test periods were 1 hour, 1 day, 3 days, 7 days, 10 days, 14 days, 28 days, 91 days, and 180 days. All anastomoses were evaluated for patency, and selected samples were utilized for light microscopy, and mechanical testing (intraluminal pressure raised to 300 mmHg). It was determined that similar patency rates and slightly faster time to perform the same procedure could be achieved with the use of the low-powered CO2 laser. However, histologic evidence of significant medial damage raises concern about the long-term risk of a higher aneurysm rate. Vessel damage and the lack of simple intraoperative methods to verify the quality of the laser technique restrict these authors from advocating the clinical introduction of the procedure until further advances are made.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In order to understand the participation of the geometrical and elastic properties of the large cerebral arteries in the maintenance of brain circulatory homeostasis, biomechanical properties of isolated internal carotid artery (extracranial part) and vertebral artery (intrathoracic part) were investigated both in a relaxed and in an activated (3x 10(-6) mol.l-1 norepinephrine) state of the smooth muscle. Quasi-static large deformation mechanical test was carried out by means of changing the intraluminal pressure slowly (2.5 mmHg.sec-1) and cyclicly in a range of 0-250 mmHg at in vivo length while external diameter was recorded continuously as a function of the intraluminal pressure. Maximum active tangential strain was found to be -2.7 +/- 1.6% at 70 mmHg for the internal carotid artery, and -5.9 +/- 1.1% at 100 mmHg for the vertebral artery. Incremental elastic modulus decreased and distensibility increased in both arteries following smooth muscle activation, these alterations, however, were larger in the case of the vertebral artery. A U-shaped characteristic impedance of vertebral artery was found both in relaxed and in constricted states of this vessel. Minimum values for the relaxed and the activated segments were found at 90 mmHg and 120 mmHg, respectively. These results support the hypothesis that certain biomechanical properties of the large arteries, like impedance, can be regarded as controlled variables that may contribute to the optimization of circulatory functions.  相似文献   

17.
Aging is associated with alterations in beta-adrenergic receptor (beta-AR) signaling and reduction in cardiovascular responses to beta-AR stimulation. Because exercise can attenuate age-related impairment in myocardial beta-AR signaling and function, we tested whether training could also exert favorable effects on vascular beta-AR responses. We evaluated common carotid artery responsiveness in isolated vessel ring preparations from 8 aged male Wistar-Kyoto (WKY) rats trained for 6 wk in a 5 days/wk swimming protocol, 10 untrained age-matched rats, and 10 young WKY rats. Vessels were preconstricted with phenylephrine (10-6 M), and vasodilation was assessed in response to the beta-AR agonist isoproterenol (10-10-3 x 10-8 M), the alpha2-AR agonist UK-14304 (10-9-10-6 M), the muscarinic receptor agonist ACh (10-9-10-6 M), and nitroprusside (10-8-10-5 M). beta-AR density and cytoplasmic beta-AR kinase (beta-ARK) activity were tested on pooled carotid arteries. beta-ARK expression was assessed in two endothelial cell lines from bovine aorta and aorta isolated from a 12-wk WKY rat. beta-AR, alpha2-AR, and muscarinic responses, but not that to nitroprusside, were depressed in untrained aged vs. young animals. Exercise training restored beta-AR and muscarinic responses but did not affect vasodilation induced by UK-14304 and nitroprusside. Aged carotid arteries showed reduced beta-AR number and increased beta-ARK activity. Training counterbalanced these phenomena and restored beta-AR density and beta-ARK activity to levels observed in young rat carotids. Our data indicate that age impairs beta-AR vasorelaxation in rat carotid arteries through beta-AR downregulation and desensitization. Exercise restores this response and reverts age-related modification in beta-ARs and beta-ARK. Our data support an important role for beta-ARK in vascular beta-AR vasorelaxation.  相似文献   

18.
Passive mechanical properties differ between muscle groups within a species. Altered functional demands can also shift the passive force-length relationship. The extent that passive mechanical properties differ within a muscle group (e.g. spine extensors) or between homologous muscles of different species is unknown. It was hypothesized that multifidus, believed to specialize in spine stabilization, would generate greater passive tensile stresses under isometric conditions than erector spinae, which have more generalized functions of moving and stabilizing the spine; observing greater multifidus moduli in different species would strengthen this hypothesis. Permeabilized fibre bundles (n = 337) from the multifidus and erector spinae of mice, rats, and rabbits were mechanically tested. A novel logistic function was fit to the experimental data to fully characterize passive stress and modulus. Species had the greatest effect on passive muscle parameters with mice having the largest moduli at all lengths. Rats generated less passive stress than rabbits due to a shift of the passive force-length relationship towards longer muscle lengths. Rat multifidus generated slightly greater stresses than erector spinae, but no differences were observed between mouse muscles. The secondary objective was to determine the parameters required to simulate the passive force-length relationship. Experimental data were compared to the passive muscle model in OpenSim. The default OpenSim model, optimized for hindlimb muscles, did not fit any of the spine muscles tested; however, the model could accurately simulate experimental data after adjusting the input parameters. The optimal parameters for modelling the passive force-length relationships of spine muscles in OpenSim are presented.  相似文献   

19.
20.
The purpose of the present study was to determine the in vivo passive mechanical properties, including the length below the slack length, of the gastrocnemius muscle (GAS) belly in humans. Transverse ultrasound images of the medial head of the GAS were taken in 11 subjects during passive knee extension from 80 degrees to 5 degrees with a constant ankle joint angle of 10 degrees (0 degrees is the neutral ankle position: positive values for dorsiflexion). The change in passive ankle joint moment (Mp), which is produced only by the GAS length change, was also measured during passive knee extension. The onset of Mp during passive knee extension was found to be 43+/-8 degrees (mean+/-SD) when the baseline of the Mp was set at the average Mp in the range of 55-60 degrees where the Mp was almost constant (SD<0.03 Nm). At this onset, the muscle fascicle length of the GAS (Lf) was 46+/-7 mm (slack length; Lfs). Lf at 80 degrees was 6+/-4 mm (13+/-6%) less than the Lfs, and Lf at 5 degrees was 12+/-5 mm (27+/-11%) greater than the Lfs. The passive force-resisting compression of the GAS did not produce a dorsiflexion moment in the joint angle range adopted. The passive ankle joint moment increased linearly with Lf (coefficient of determination (R2)=0.85-0.96), and the slopes of the relationships between Lf and Mp, and between the relative Lf to Lfs and Mp were 0.093+/-0.038 Nm/mm and 0.043+/-0.021 Nm/%Lfs. The findings of the present study can be implemented in musculoskeletal modeling, which would provide a more accurate evaluation of the passive mechanical properties of muscle during movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号