首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
Seagrass meadows are important primary producers in SE-Asia coastal areas that are increasingly threatened by human activities resulting in a deterioration of the underwater light environment. The resilience of seagrass meadows to decreasing light availability should be approached in an integrative manner, because they shelter complex communities of primary and secondary producers. The aim of this study was to measure the in situ metabolism of a seagrass community under different levels of light availability following changes in the water column dissolved oxygen (DO) and dissolved inorganic carbon (DIC), the sediment redox potential and seagrass production. Net community production (NCP) and respiration were measured along two diel cycles to produce a balance of NCP under different light treatments. On a daily basis, at full irradiance, the community metabolism presented a net production which was close to zero, with values of −7.75 to 16.6 mmol O2 m−2 day−1 for DO, and −56.8 to 22.7 mmol C m−2 day−1 for DIC in the first and second incubation runs, respectively. Compensation irradiance for the NCP was thus found to be close to 80% of the present light availability. Shading resulted in a general decrease in the sediment redox potential, while the initial redox potential had not recovered 6 days after exposure to full sunlight. This community appears to be in a fragile equilibrium with the environment, and any minor decrease in the water transparency would lead to a shift from an autotrophic to a heterotrophic system.  相似文献   

2.
Decomposition of aboveground and belowground organs of the emergent macrophyte Z.latifolia was investigated using a litterbag technique for a period of 359 days in a freshwater marsh in Japan. Aboveground parts were classified into: leaves, sheaths and stems. Belowground parts were classified into: horizontal rhizomes (new rhizome, hard rhizome, soft rhizome) and vertical rhizome (stembase). The decay rate (k) was 0.0036 day−1, 0.0033 day−1 and 0.0021 day−1 for leaves, sheaths and stems, respectively. For belowground parts, the decay rate varied considerably from 0.0018 day−1 to 0.0079 day−1, according to differences in the initial chemical compositions of rhizomes. After 359 days of decay, new rhizomes lost 94% of their original dry mass, compared with a loss of 48–84% for the other rhizomes. There was a significant positive relationship between litter quality and decay rate for horizontal rhizomes. For the new rhizomes, which had an internal nitrogen content of 24.2 mg N g−1 dry mass, the mass loss was 40% higher than that of soft rhizomes, which had an internal N content of 9.8 mg N g−1 dry mass. Over the period of 359 days, the nitrogen concentration in all rhizome types decreased to levels lower than initial values, but the phosphorus concentration remained constant after an initial leaching loss. Most nitrogen and phosphorus were lost during the first 45 days of decay. Changes in carbon to nitrogen (C:N) and carbon to phosphorus (C:P) ratios basically followed inversed trends of the nitrogen and phosphorus concentrations.  相似文献   

3.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems.  相似文献   

4.
《Aquatic Botany》1987,27(3):257-266
The seagrass Thalassodendron pachyrhizum den Hartog grows on limestone reef platforms. Monthly leaf biomass was measured over 2 years and showed a strong seasonal variation with maximum biomass of 500 g m−2. This seagrass loses all its leaves except for a bud and this characteristic was used to obtain a conservative estimate of productivity by change in standing stock. Leaf growth during the growing season was 6.6 mg Cg−1 day−1. Leaf length frequencies showed that new leaves formed during autumn (March–April). They grew from autumn until spring (November) and began to senesce in summer, followed by leaf fall in late summer (February–March).The growth of rhizome shoots “invading” free substratum space and the growth of new stems was measured for a 300-day period; about 9 leaves were produced in this period.  相似文献   

5.
Seagrasses are a group of 12 genera of monocotyledonous plants in four families that have successfully colonised shallow coastal seas, probably since the Cretaceous. Variations in light availability and water movement are prime environmental factors for the growth of these marine angiosperms. An overall similarity in growth form and modular clonal architecture allows the generalisation that small species have short-lived shoots with rapidly elongating rhizome axes, whilst the larger species have longer-lived shoots that do not expand rapidly with rhizomes. Annual rhizome elongation rates range between 2 cm and 4 m among species. This range in expansion capacity is correlated with rhizome diameter in an allometric fashion (y=191x?1.5, r2=0.58, p<0.05). Rhizomes with a wider diameter also allow the storage of larger quantities of reserve carbohydrates to be mobilized during the adverse winter season at higher latitudes or for flowering. Repeated branching and the basal positioning of the meristems allow the formation and maintenance of seagrass meadows, and these are a prominent feature creating spatial heterogeneity on the sea floor down to a mean colonisation depth of 15.1±1.3 m (median 8 m, range 0.7–90 m, n=150). Spatial complexity is highest in multi-species seagrass beds, such as those of the Indo-Pacific region and Australia. Seagrass beds function as important coastal filters for nutrients and pollutants and display high carbon sequestration rates. Due to the recalcitrant nature of seagrass detritus, it forms a disproportionally high contribution (12%, but only 1% of productivity) to the carbon stored in ocean sediments. The services provided by these ecosystems to human society range from water quality improvement via nursery and feeding grounds for economically important fish to storm buffering and recreative amenity.  相似文献   

6.
The development of single clones of the seagrass Cymodocea nodosa was analysed using a growth model based on the formation of structures limited by diffusive aggregation. The model implemented the measured clonal growth rules (i.e. rhizome elongation and branching rates, branching angle, and spacer length between consecutive shoots) and shoot mortality rate for C. nodosa at Alfacs Bay (Spain). The simulated patches increased their size nonlinearly with time displaying two different domains of growth. Young patches showed a rapid increase with time of the length of rhizome network and the number of living shoots, which depended on rhizome branching rate, and increased the radial patch size (Rg) algebraically with the number of living shoots as Rg ∝ Ns1/Df, being Df the fractal dimension of the patch structure. Patches older than 4 years increased the production of rhizome network and the number of living shoots much more slowly, while their radial patch size behaved as Rg ∝ Ns0.5 resulting from an internal patch compactation. Moreover, the linear growth rate of the simulated patches changed up to 30 fold during patch development, increasing with increasing patch size until patches reached an intermediate size. The modelled patch development was found to closely reproduce the observed patch structure for the species at the Alfacs Bay (Spain). Hence, the growth of C. nodosa patches initially proceeds with a growth mode controlled by the branching pattern (branching frequency and angle) of the species, producing sparse and elongated patches. Once patches exceed 4–5 years of age and contained >500 shoots, becoming dense and circular, they shifts to a growth model typical of compact structures. These results explain previously unaccounted evidence of the emergence of nonlinear patch growth from simple clonal growth rules, and highlight the importance of branching frequency and angles as critical determinants of the space occupation rate of seagrasses and probably other clonal plants.  相似文献   

7.
Zostera marina L. (eelgrass) from Great Bay Estuary, New Hampshire and Maine (USA), was transplanted in outdoor mesocosms and subjected to four light treatments (100, 58, 34 and 11% surface irradiance, SI) between May and September 2003 to investigate the relationship between light availability and the growth and survival of eelgrass. Evaluating eelgrass seedlings and adult mature plants demonstrated no differences in photosynthetic response after 22 days of acclimation. During at least the first 19 days of shading, maximum electron transport rate (ETRmax) rate of eelgrass did not differ significantly between light treatments. After 40 days, a significant reduction in ETRmax and minimum saturating light was observed in plants growing at 34% SI and below. Morphological responses exhibited a linear increasing trend with greater light. 34% SI exhibited drastic reductions (to less than 25% of control) in rhizome growth, shoot density, shoot production, number of nodes per plant and plant weight at the end of the study (81 days). Shoot to root ratio at 34% SI increased by > 50%. Plants shaded to 58% SI showed no significant difference from the control in plant parameters except an increased rate of rhizome elongation. Our results link the lower shoot densities with shading to the slow growth rate of horizontal rhizomes and a total lack of lateral expansion at 11% SI. ETRmax declined over time in plants at 11% SI resulting in 81% mortality, no lateral branching and no morphological development, indicating that the minimum light required for long-term eelgrass growth and survival is greater than the previously suggested 11% SI. We demonstrate that eelgrass plants at these latitudes can persist at light levels of 58% SI and above, and are light-limited at 34% SI and below.  相似文献   

8.
We used 15N to quantify rates of N translocation from aerial to belowground tissues, foliar leaching, and turnover and production of root and rhizome biomass in the plant-sediment system of short Spartina alterniflora areas of Great Sippewissett Marsh, Massachusetts. Decay of belowground tissues in litterbag incubations at 1- and 10-cm depths resulted in 80% remineralization of the original plant (15N-labeled) N and 20% burial after 3 years. Translocation of 15N from plant shoots in hydrologically controlled laboratory lysimeters maintained under field conditions was 38% of the aboveground pool while leaching of N was 10% from June to October. Most of the translocated N was not retranslocated to new aboveground growth in December but appeared to be either remineralized or buried in the sediment. Injection of 15N into field stands of grass showed initially high incorporation into plants followed by a continuous decline over the next 7 years yielding a gross tumover time of 1.5–1.6yr. Correcting the gross N turnover for recycling of label via translocation and uptake of remineralized label during this period, a net root and rhizome turnover time of 1.0–1.1 yr was obtained. Combining the turnover time with independent estimates of seasonal belowground biomass yielded an estimate of belowground production of 929–1,022 g C m−2 yr−1, similar to measurements by traditional biomass harvest, CO2 based budgets and models for comparable areas of this marsh. Integration of the production and nitrogen balance estimates for short Spartina marsh yielded translocation, 1.4 g N m−2 yr−1, leaching, 0.4 g N m−2 yr−1, remineralization, 14.9–16.3 g N m−2 yr−1, and burial, 3.7–4.1 g N m−2 yr−1.  相似文献   

9.
Effects of total irradiance on growth and flowering were studied in cineraria cv. Cindy Blue grown under warm (mean 21°C) glasshouse conditions. Efficiency of light conversion for leaf and shoot dry weight increase were reduced from 0.08 to 0.02 as the mean daily light integral increased from 0.9 to 4.4 MJ m-2 day-1 but no significant difference in leaf area were associated with this. Specific leaf area decreased exponentially from 0.07 to 0.02 m2g1 over the cumulative irradiance range 23 to 127 MJ m-2 after the start of treatments and thereafter remained stable. A light integral of 19.2 MJ m-2 were required for initiation of one leaf in plants grown under a daily integral of 4.4 MJ m-2 day-1, as compared with only 5.1 MJ m-2day-1 required per leaf in plants grown at less than 0.9 MJ m-2day-1. Neither chronological duration of juvenile development nor leaf number below the flower was affected by irradiance. However, as the rate of leaf initiation increased with irradiance up to 2.4 MJ m-2day-1 so the rate of progress to flower visibility increased linearly with irradiance over the same range. This rate then remained constant from 2.4 to 4.4 MJ m-2day-1. Length of the main flowering shoot decreased and the number of flowering shoots increased as irradiance increased from 0.9 to 2.4 MJ m-2 day-1 and then remained unchanged by further increases in irradiance.  相似文献   

10.
The recovery capacity of meadows of the Mediterranean seagrass Posidonia oceanica (L.) Delile in an area affected by illegal trawling were assessed after protection by anti-trawling reefs. The differences in vegetative growth between two impacted and two undisturbed localities were tested using growth, shoot balance, aborted branches, and leaf and rhizome production of both plagiotropic and orthotropic rhizomes. The organic matter in sediments, silt clay fraction and light intensity incident on the bottom were also measured in order to evaluate the physical conditions. Environmental and plant variables were measured in three sites placed inside each locality. The vegetative growth was positive in both impacted and control meadows but growth rates were lower in impacted than in control meadows. Average growth, production and shoot balance were greater in plagiotropic rhizomes from undisturbed localities (40.7±1.75 vs. 28.4±1.34 mm/year, 1133±0.06 vs. 708±0.04 mg DW/shoot/year, 1.36±0.08 vs. 0.96±0.06 shoots/year, respectively). Significantly greater values were also found in undisturbed localities for orthotropic rhizomes in terms of shoot balance and rhizome production (0.07±0.01 vs. 0.01±0.003 shoots/shoot/year and 155 vs. 124 mg DW/shoot/year, respectively). Of the physical parameters measured, only light intensity differed significantly between impacted and undisturbed localities. This parameter was 15.5% to 67.6% lower in impacted localities than in undisturbed localities, and this is the factor that causes the retardation of vegetative growth. The results show that recovery of P. oceanica meadows is possible after eliminating the cause of the impact. However, the very low rates of vegetative growth may prolong the time to total recuperation to almost 100 years. Therefore, effective management of P. oceanica meadows should aim to prevent meadow loss.  相似文献   

11.
Summary Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.  相似文献   

12.
Nickel (Ni) may impair plant water balance through detrimental effects on the belowground level. Bilberry (Vaccinium myrtillus L.) plants were grown in a mesic heath forest-type soil and subjected to Ni sulphate (NiSO4·6H2O) concentrations of 0, 10, 50, 100 and 500 mg m−2 during an entire growing season in northern Finland (65°N). Biomass of belowground rhizomes, and tissue water content (TWC) and anthocyanin concentrations of aerial shoots were determined from mature plants in order to study rhizospheric Ni stress, and its possible long-distance effects on aerial shoots. As the major proportion of biomass of bilberry is invested in belowground parts, it was hypothesised that Ni-induced rhizospheric disturbance causes water stress in aerial shoots and increases their anthocyanin concentrations for osmotic regulation. Uptake of Ni from the soil to the rhizome and aerial shoots was measured with X-ray fluorescence spectrometry. Ni concentrations in the soil and rhizome exhibited a dose–response relationship, but the concentrations in the rhizome were about 10-fold lower (<3 mg Ni kg−1) than those in the soil (<30 mg Ni kg−1). Translocation of Ni from the rhizome to aerial shoots did not occur, as Ni concentrations in shoots remained at 1 mg Ni kg−1. Although Ni concentrations in the rhizome were below the threshold values of Ni toxicity (i.e. 10–50 mg Ni kg−1), Ni decreased the rhizome biomass. Anthocyanins decreased in aerial shoots along with the Ni accumulation in the rhizome, while TWC was unaffected. The result suggests that anthocyanins are not involved in osmotic regulation under Ni stress, since anthocyanins in aerial shoots responded to the Ni concentrations in the rhizome despite the lack of water stress.  相似文献   

13.
The aim of this study was to investigate whether resource availability affects the degree of physiological integration and the growth pattern of interconnected ramets in the clonal plantMaianthemum bifolium (L.)F.W. Schmidt (Liliaceae), a rhizomatous herb of European forests, by studying it at two contrasting South Swedish beech forest sites termed “poor” and “rich”. The degree of physiological integration was studied by tracing the pattern of14C translocation and in a cutting experiment involving rhizome severing and defoliation treatments. The size of the plants, growth of new rhizomes, branching frequency, distance between shoots and the internode length were compared. The plants were larger, rhizomes had greater specific mass (mg mm?1), internodes were shorter and branching frequency higher at the rich site. The cutting treatments reduced the growth of new rhizomes at both sites, and new rhizome segments had lower specific mass in treated plants than in controls, showing the importance of physiological integration for new growth. Translocation of14C in May showed that the young rhizome tip was a strong sink for carbon. Basipetal translocation to older portions of the rhizome system was greater at the rich site than at the poor site. In September, four months after labelling, the rhizome tips were still strongly labelled with14C and basipetal translocation had increased at both sites. Plants at the rich site appeared to translocate larger amounts of14C basipetally than plants at the poor site. It is concluded thatM. bifolium shows a plastic response to resource availability by varying rhizome growth and branching frequency, but the degree of physiological integration is probably only indirectly affected through an increased number of sinks (new rhizome branches) along the ramet system at the rich site.  相似文献   

14.
The growth of Disanthus cercidifolius and Rhododendron cultivars, and to a lesser extent Crataegus oxyacantha cv. Paul's Scarlet, was modified by altering either the spectral quality or the level of irradiance received by shoot cultures; which were otherwise maintained under uniform medium and plant growth regulator (PGR) conditions in vitro. When the spectrum of Philips colour 84 (white) fluorescent lamps was modified by coloured cellulose acetate filters, red light promoted shoot extension and axillary branching, whereas blue light inhibited shoot growth and reduced leaf chlorophyll content in the sensitive cultivar R. cv. Dopey. By using single or multiple layers of neutral density filters, or moving cultures nearer to the light source, irradiance from white light was varied. All cultures grew well at low levels of irradiance (c. 11 µmol m–2 s–1), but the growth and leaf chlorophyll content of cultures of Disanthus and Rhododendron cultivars were suppressed by increasing irradiance. In three related Rhododendron cultivars, increased irradiance promoted the development of adventitious shoots. Crataegus shoots were tolerant of a wide range of irradiances and only shoot extension was inhibited at the highest level tested; leaf chlorophyll content was unaffected. These results are discussed in terms of the differential perception of light relative to the natural habitats of these plants, and of the possible direct effect of irradiance upon PGRs in the culture system.  相似文献   

15.
Productivity measurements from carbon uptake have been suggested as good indicators of the physiological health of seagrasses. As seagrasses acquire carbon from the surrounding water, the rate of uptake often provide a good measure of the efficiency at which seagrasses meet their resource demands for growth. This rate is often used to assess the photosynthetic efficiency of the plants, a proxy for the physiological status of seagrass. This has special relevance to the Adelaide region as over 5000 ha of seagrasses have been lost from Adelaide coastal waters over the last 70 years, with much of this loss attributed to nutrient inputs from wastewater, industrial and stormwater discharges. This study used an in-situ inorganic carbon isotope-labelling and spike approach to obtain ecologically relevant estimates of seasonal variability in carbon uptake and its allocation in two species of temperate seagrass common to this coast (Amphibolis antarctica and Posidonia angustifolia). Uptake of carbon by the seagrass complex (leaves, roots, phytoplankton and epiphytes) was affected by both season and species. Carbon uptake rates of phytoplankton were generally higher than other components of the system. Uptake rates ranged from 0.01 mg C g− 1 DW h− 1 (summer) to 0.61 mg C g− 1 DW h− 1 (spring) in Posidonia and 0.02 mg C g− 1 DW h− 1 (summer) to 0.93 mg C g− 1 DW h− 1 (winter) in Amphibolis. Carbon uptake by the Amphibolis complex was higher than in the Posidonia complex. The Amphibolis complex had higher uptake rates in summer whereas the Posidonia complex was higher in spring. Fine sediments probably from a nearby dredging operation, are likely to have resulted in lower carbon uptake and a reduction in the above-ground and below-ground biomass in summer.  相似文献   

16.
The small but diverse group of angiosperms known as seagrasses form submersed meadow communities that are among the most productive on earth. Seagrasses are frequently light-limited and, despite access to carbon-rich seawaters, they may also sustain periodic internal carbon limitation. They have been regarded as C3 plants, but many species appear to be C3–C4 intermediates and/or have various carbon-concentrating mechanisms to aid the Rubisco enzyme in carbon acquisition. Photorespiration can occur as a C loss process that may protect photosynthetic electron transport during periods of low CO2 availability and high light intensity. Seagrasses can also become photoinhibited in high light (generally>1000 μE m−2 s−1) as a protective mechanism that allows excessive light energy to be dissipated as heat. Many photosynthesis–irradiance curves have been developed to assess light levels needed for seagrass growth. However, most available data (e.g. compensation irradiance Ic) do not account for belowground tissue respiration and, thus, are of limited use in assessing the whole-plant carbon balance across light gradients. Caution is recommended in use of Ik (saturating irradiance for photosynthesis), since seagrass photosynthesis commonly increases under higher light intensities than Ik; and in estimating seagrass productivity from Hsat (duration of daily light period when light equals or exceeds Ik) which varies considerably among species and sites, and which fails to account for light-limited photosynthesis at light levels less than Ik. The dominant storage carbohydrate in seagrasses is sucrose (primarily stored in rhizomes), which generally forms more than 90% of the total soluble carbohydrate pool. Seagrasses with high Ic levels (suggesting lower efficiency in C acquisition) have relatively low levels of leaf carbohydrates. Sucrose-P synthase (SPS, involved in sucrose synthesis) activity increases with leaf age, consistent with leaf maturation from carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40°C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic ‘strategy’ that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism — controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy — remain to be resolved as directions in future research. Such research will strengthen the understanding needed to improve management and protection of these environmentally important marine angiosperms.  相似文献   

17.
Effects of low light intensity on growth and accumulation of secondary metabolites of a medicinal plant Glycyrrhiza uralensis Fisch. were investigated. Hydroponic-cultivated one year-old rhizome seedlings were grown under three low irradiances, 200, 100, and 50 μmol m−2 s−1 for 135 days. Control plants were cultured under natural light conditions. Low light intensity stress decreased leaf thickness, photosynthesis and biomass, but increased leaf area and chlorophyll concentrations. Low light intensity also significantly increased accumulation of glycyrrhizic acid and liquiritin in the root, while the maximum values of both secondary metabolites were obtained under an irradiance of 100 μmol m−2 s−1. Concentrations of both secondary metabolites were negatively correlated with root biomass. The results suggested that G. uralensis could endure an environment with low light intensity and suitable light control might increase the secondary metabolite contents within agroforestry systems.  相似文献   

18.
《Aquatic Botany》1987,27(4):363-383
During 1982, structural and functional aspects of the epiphytic component in a tropical mixed seagrass meadow, have been investigated for each seagrass species separately. This meadow consisted of the seagrasses Thalassia hemprichii (Ehrenb.) Aschers., Cymodocea serrulata (R.Br.) Aschers. et Magnus, C. rotundata Ehrenb. et Hempr. ex Aschers., Halodule uninervis (Forssk.) Aschers. and Syringodium isoetifolium (Aschers.) Dandy.No significant differences were observed in floristic composition, number of algal species, abundance and diversity of the epiphytic component. On an area basis, annual mean above-ground biomass (seagrass leaves and epiphytes), amounted to 82 g ADW, of which 18% could be ascribed to the epiphytic component. The contribution of the epiphytic component to the annual mean above-ground production ranged from 16% on leaves of Thalassia hemprichii to 33% on leaves of Cymodocea serrulata. Total annual mean epiphyte production was 4.6 g ADW m−2 sediment surface day−1 (19%).When including the macroalgal component of this mixed seagrass meadow, total annual mean above-ground plant biomass amounted to 93 g ADW (212 g DW) on an area basis, of which the epiphytes contributed 15.5% (28.5% DW), the macroalgal component 12% (32.5% DW) and the seagrass leaves 72.5% (39.5% DW). Aspects of the epiphytic component (e.g., floristic composition, abundance, biomass and production) in monospecific and mixed seagrass communities are discussed.  相似文献   

19.
Two dense meadows of the seagrass Thalassodendron ciliatum (Forssk.) den Hartog were sampled during the Indonesian—Dutch Snellius II expedition to Eastern Indonesia. Production data were obtained from one of these meadows. The production of leaf biomass was measured by the leaf marking technique of Zieman and by the plastochrone interval method. The two methods reached comparable results. The production of leaf tissue was 4.2 mg ADW shoot?1 day?1. The production of rhizome biomass was calculated in a similar way, based on the plastochrone interval of rhizome nodes. The production of the meadow, exclusive of the production of roots and fruits, amounted to 4.5 g ADW m?2 day?1. A significant correlation between the growth rates of rhizomes and leaves was observed. Biomass data from the second site are given.  相似文献   

20.
Fine-scale dynamics of rhizomes in a grassland community   总被引:3,自引:0,他引:3  
Spatial dynamics in grassland communities are constrained by the belowground spatial distribution of roots and rhizomes. Their dynamics are difficult to measure as underground data collection tends to be destructive and cannot be repeated at the same plot over time. We investigated rhizome dynamics indirectly by examining rhizome spatial structure on long‐term grassland study plots where aboveground shoot counts have been recorded using a fine‐scale grid over nine years. Number of rhizome apical ends, basal ends and total rhizome length of both live and dead rhizomes were obtained from the data by scanning rhizomes and processing them by GIS vectorization. These rhizome variables were correlated with the above‐ground shoot counts in grid cells over varying temporal lags. There was a general decrease in the intensity of correlation between live rhizomes and shoot counts with increasing time lags. Correlation of dead rhizomes increased with increasing time lag, reaching a maximum after several years, and then declined. Species differed strongly in the change of rhizome‐shoot counts correlation over varying time lags. These differences were used to infer rhizome growth dynamics, namely rhizome growth rate and lifespan, and rhizome mean decomposition time. The species involved differed in all these traits. Mean rhizome growth rate ranged from 0.2 (Polygonum bistorta) to 3.3 cm ur?1 (Deschampsia flexuosa); mean rhizome lifespan ranged from 5 yr (Anthoxanthum alpinum) to over 8 yr (Nardus stricta) and mean decomposition time from one growing season (Anthoxanthum) to 7 yr (Polygonum). Presence of dead rhizomes below living rhizomes or aboveground shoots was taken as an indication of fine‐scale replacements between species. These were highly non‐random, with some species pairs replacing significantly more frequently. These differences in rhizome growth parameters underlie different strategies of horizontal growth and dieback between species. These can serve as one of the mechanisms of species replacements and contribute to the fine‐scale coexistence of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号