首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The energetics and behavior of the parapodial-swimming Aplysia brasiliana were investigated in order to compare net cost of transport (COTnet) between swimming and crawling, and to compare transport costs with other swimmers. Oxygen consumption (VO2) increased with increasing animal mass for resting, crawling, and swimming animals. Slopes of the regressions of log VO2 on log mass were 0.90, 0.91, and 0.89 for resting, crawling, and swimming, respectively. The regression for resting VO2 on mass was significantly lower than regressions of crawling and swimming on mass, which fell into a statistically homogenous subgroup. During 4-h swimming bouts, parapodial beat frequency dropped by less than 10% of starting values after 2 h and then stabilized for the remainder of the trial, whereas velocity steadily decreased to about 70% of starting values over the 4-h period. Initial beat frequency (at the start of a swimming bout) was negatively related to body mass, varying from 1.1 beat s− 1 for a 34 g individual to 0.7 beats s− 1 for a 500 g individual. Final beat frequency (at the end of a swimming bout) was also negatively related to body mass, but had a significantly lower intercept than initial beat frequency. Neither initial swimming velocity nor final swimming velocity was related to mass, but final velocity was significantly lower than initial velocity. A 250 g A. brasiliana swam at 345 m h− 1 and crawled at 7 m h− 1. Swimming COTnet (0.1 ml O2 kg− 1 m− 1) for a 250 g A. brasiliana was 50 times less than crawling COTnet (5.3 ml O2 kg− 1 m− 1). While the crawling COTnet for A. brasiliana fell within the range of other marine gastropods, swimming COTnet was less than that of swimming crustaceans, and much less than another gastropod, Melibe leonina, that uses lateral bending to swim.  相似文献   

3.
Measurements of bimodal oxygen uptake have been made in a freshwater air-breathing fish,Notopterus chitala at 29.0±1(S.D.)°C. xhe mean oxygen uptake from continuously flowing water without any access to air, was found to be 3.58±0.37 (S.E.) ml O2 · h?1 and 56.84+4.29 (S.E.) ml O2 · kg?1 · h?1 for a fish weighing 66.92 + 11.27 (S.E.) g body weight. In still water with access to air, the mean oxygen uptake through the gills were recorded to be 2.49 ± 0.31 (S.E.) ml O2 · h?1 and 38.78 ± 1.92 (S.E.) ml O2 · kg?1 · h?1 and through the accessory respiratory organs (swim-bladder) 6.04±0.87 (S.E.) ml O2 · h?1 and 92.32±2.91 (S.E.) ml O2 · kg?1 · h?1 for a fish averaging 66.92±11.27 (S.E.) g. Out of the total oxygen uptake (131.10 ml O2 · kg?1 · h?1), about 70% was obtained through the aerial route and the remainder 30% through the gills.  相似文献   

4.
Basal metabolic rate (BMR) is thought to be a major hub in the network of physiological mechanisms connecting life history traits. Evaporative water loss (EWL) is a physiological indicator that is widely used to measure water relations in inter- or intraspecific studies of birds in different environments. In this study, we examined the physiological responses of summer-acclimatized Hwamei Garrulax canorus to temperature by measuring their body temperature (Tb), metabolic rate (MR) and EWL at ambient temperatures (Ta) between 5 and 40 °C. Overall, we found that mean body temperature was 42.4 °C and average minimum thermal conductance (C) was 0.15 ml O2 g−1 h−1 °C−1 measured between 5 and 20 °C. The thermal neutral zone (TNZ) was 31.8–35.3 °C and BMR was 181.83 ml O2 h−1. Below the lower critical temperature, MR increased linearly with decreasing Ta according to the relationship: MR (ml O2 h−1)=266.59–2.66 Ta. At Tas above the upper critical temperature, MR increased with Ta according to the relationship: MR (ml O2 h−1)=−271.26+12.85 Ta. EWL increased with Ta according to the relationship: EWL (mg H2O h−1)=−19.16+12.64 Ta and exceeded metabolic water production at Ta>14.0 °C. The high Tb and thermal conductance, low BMR, narrow TNZ, and high evaporative water production/metabolic water production (EWP/MWP) ratio in the Hwamei are consistent with the idea that this species is adapted to warm, mesic climates, where metabolic thermogenesis and water conservation are not strong selective pressures.  相似文献   

5.
The aim of this study was to determine the effect of sediment grazing and burrowing activities of natural populations of Mictyris longicarpus on benthic metabolism, nitrogen flux and irrigation rates by comparing sediments taken from minimum disturbance exclusion cages and adjacent sediments subject to M. longicarpus activities. M. longicarpus reduced sediment surface chlorophyll a (approximately 77%), organic carbon (approximately 95%) and total nitrogen concentrations (approximately 99%) in comparison to ungrazed sediments. Consequently, they significantly reduced gross benthic O2 production (about 71%) and sediment O2 consumption (approximately 46%). Mean N2 fluxes showed net effluxes (276-430 μmol m−2 day−1) in the presences of M. longicarpus and net uptakes (194.09-449.21 μmol m−2 day−1) where they were excluded. The net uptake of N2 was most likely due to cyanobacteria fixing of N2, as dense microbial mats became established over the sediment surface in the absence of M. longicarpus grazing activity. Sediment irrigation/transport rates calculated from CsCl tracer dilution indicated greater irrigation rates in the exclusions (12.12-16.22 l m−2 h−1) compared to inhabited sediments (6.33-11.73 l m−2 h−1) and this was again was most likely due to the lack of grazing pressure which allowed large populations of small burrowing polychaetes to inhabit the organic matter rich exclusion sediments. As such, the main influence of M. longicarpus was the interception and consumption of transported organic material, benthic microalgae and other small infaunal organisms resulting in the removal of approximately 0.06 g m−2 day−1 of nitrogen and 12.12 g m−2 day−1 of organic carbon. This “cleansing” of the sediments reduced sediment metabolism and the flux of solutes across the sediment water interface and ultimately the heavy predation of M. longicarpus by transient species such as stingrays, results in a net loss of carbon and nitrogen from the system.  相似文献   

6.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

7.
Final temperature preferendum of white shrimp adults were determined with acute and gravitation methods. The final preferendum was similar, independent of method (26.2–25.6 °C). A direct relationship was determined between the critical thermal maxima values and the acclimation temperatures (P<0.05). The end point of Critical Thermal Maxima (CTMax) for adults was defined as the loss of righting response (LRR). The acclimation response ratio (ARR) for adults of white shrimp had an interval of 0.36–0.76, values that agreed with others obtained for crustaceans from tropical and subtropical climates. The oxygen consumption rates increased significantly (P<0.05) from 39.6 up to 90.0 mg O2 kg−1 h−1 wet weight (w.w.) as the acclimation temperature increased from 20 to 32 °C. The range of temperature coefficient (Q10) of the white shrimp between 23 and 26 °C was the lower 1.60. The results obtained in this work are discussed in relation to the species importance in the reproductive scope and maintenance of breeders.  相似文献   

8.
Here we report the first study of clearance rate and respiration rate of a deep living bivalve, Acesta excavata (J.C. Fabricius, 1779) (Mollusca: Limidae). We found that A. excavata had extreme values both for clearance and respiration rates compared to other bivalves. It has the second largest clearance rate ever reported, 13.36 l h− 1 g− 1, and the second lowest value of respiration rate, 0.12 ml O2 h− 1 g− 1. The gill area of 7063 mm2 g− 1 is one of the largest found in bivalves so far. We suggest that these values indicate a physiological adaptation to the low and irregular food supply in the deep sea rather that a specific adaptation to depth.  相似文献   

9.
Clusters [MoS4Ag3(PPh3)3{S2P(OPri)2}] (1), [WS4Ag3(PPh3)3{S2P(OPri)2}] (2) and [WOS3Ag3(PPh3)3{S2P(OPri)2}] (3) were synthesized by the reaction of (NH4)2MoS4/(NH4)2WS4, (NH4)2WOS3 with Ag[S2P(OPri)2]. Their structures have been characterized by X-ray diffraction. The clusters consist of a distorted tetrahedral MS4 (or MOS3) (M = Mo, W) with three Ag atoms and three sulfur atom bridges (Fig. 1), and resemble roughly that of cubane-like clusters. The nonlinear optical (NLO) properties were studied with an 8 ns pulsed laser at 532 nm. Its optical response to the incident light exhibits good optical absorptive and refractive effects, with α2 = 1.56 × 10−10 m W−1, n2 = 3.87 × 10−17 m2 W−1 for cluster 1; α2 = 1.33 × 10−10 m W−1n2 = 6.52 × 10−17 m2 W−1for cluster 2; and α2 = 2.54 × 10−10 m W−1, n2 = 4.07 × 10−17 m2 W−1 for cluster 3 for a 1.56 × 10−4 mol dm−3 CH2Cl2 solution.  相似文献   

10.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

11.
The effect of meal size on the specific dynamic action (SDA) of the juvenile snakehead (Channa argus) was assessed at 25 °C. The fish were fed with test diets at meal sizes of 0.5, 1, 2, 3, 4, and 5% body mass and the postprandial oxygen consumption rate was determined at 1-h intervals until it returned to the pre-prandial level. The peak metabolic rate increased from 237.4 to 283.2 mg O2 kg− 1 h− 1 as the relative meal size increased from 0.5% to 3% and leveled off at 4% and 5%. Factorial metabolic scope increased from 1.53 to 1.99 and SDA duration increased from 11.7 to 32.3 h as the relative meal size increased from 0.5% to 5%. The relationship between SDA duration (D) and relative meal size (M) was described as: D = 4.28 M + 10.62 (r2 = 0.752, P < 0.05, n = 50). The energy expended on SDA increased while the SDA coefficient decreased with increasing meal size. The results of the present study suggest that the snakehead may adopt different feeding strategies when taking in different amounts of food.  相似文献   

12.
Two novel Co(II) coordination polymers {[Co(H2O)2(CH3OH)2(4-bpfp)](NO3)2}n1 (4-bpfp=N,N-bis(4-pyridylformyl)piperazine) and [Co(NCS)2(CH3OH)2(3-bpfp)]n2 (3-bpfp=N,N-bis(3-pyridylformyl)piperazine) have been synthesized and characterized by single crystal X-ray diffraction. Both the polymers consist of one-dimensional chains constructed by bridging bpfp ligands and Co(II) ions. The existence of O?H-O hydrogen bond in 1 and S?H-O hydrogen bond in 2 play important roles in creating interesting supramolecular structures. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results reveal that polymers 1 and 2 exhibit strong NLO absorption effects (α2=9.00×10−11 m W−1 for 1; 1.41 × 10−10 m W−1 for 2) and self-focusing performance (n2=3.24×10−16 esu for 1; 3.05 × 10−16 esu for 2) in DMF solutions. The corresponding effective NLO susceptibilities χ(3) values are 3.08 × 10−12 esu (1) and 4.70 × 10−12 esu (2). All of the values are comparable to those of the reported good NLO materials. Additionally, the TG-DTA results of the two polymers are in agreement with the crystal structures.  相似文献   

13.
Uptake rates of nitrate and phosphate were measured for four species and one variety of Porphyra from Long Island Sound (USA) at two temperatures and two nutrient medium concentrations at increasing intervals over a 24- or 48-h period. Maximum uptake rates found were: V30 μM0-1 h=73.8 μmol NO3 g−1 DW h−1 and V3 μM0-1 h=16.7 μmol PO4 g−1 DW h−1, in the two thinnest Porphyra. We found that the nitrate uptake rates were significantly greater at 30 μM than 3 μM NO3 concentration, and that the uptake rates decreased with time of exposure. Temperature (5, 15, and 25 °C) did not have as strong an effect on nitrate uptake rates as did nutrient concentration. Q10 values and uptake rates at four different nitrate concentrations indicated that nutrient uptake at 5 °C was initially an active process. After 24 h, the processes involved appeared passive as Q10 values were between 1.0 and 1.3 and nitrate uptake curves were linear. Nitrate uptake rates correlated positively with the surface area/volume (SA/V) ratio. No coherent trends were found for uptake of phosphate, except that the uptake rates were significantly higher in 30 μM NO3 medium as opposed to 3 μM NO3. We did not find any significant difference in uptake rate and pattern between the summer species Porphyra purpurea (Roth.) C. Agardh, the eurythermic Porphyra suborbiculata Kjellm., the winter species Porphyra rosengurttii J. Coll and J. Cox, and the two varieties of Porphyra leucosticta Thur. Le Jol. (both winter species).  相似文献   

14.
This study investigated the effects of different doses of 17-β-estradiol (E2) in Rhamdia quelen. Groups of males exposed to different doses of E2 (0.1 mg kg 1, 1 mg kg 1 and 10 mg kg 1) were compared with non-exposed male and female fish groups. Among the considered biomarkers, no significant differences were observed for micronuclei test, reduced glutathione concentration and lipid peroxidation. All E2-treated individuals had decreased glutathione S-transferase activity. Increased catalase and superoxide dismutase activities, increased vitellogenin expression and decreased metallothionein concentration were observed in males treated with the highest dose. Liver of all test groups showed necrotic areas, but cytoplasm vacuolization was again found only in the individuals exposed to highest dose. E2 causes deleterious hepatic effects to R. quelen, and vitellogenin expression, catalase and superoxide dismutase activity and metallothionein concentration represent appropriate biomarkers for studying E2 effects. Additionally, the response of some biomarkers was similar in males exposed to E2 and unexposed females, and therefore exposure to endocrine disruptors may cause consequences for fish populations.  相似文献   

15.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

16.
The standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi to changes in temperature (15-30 °C), salinity (0-45‰) and a combination thereof was investigated. The rate of oxygen consumption of the shrimp was determined using a YSI oxygen meter. At a constant salinity of 35‰ the respiration rate of P. peringueyi increased with an increase in temperature and ranged between 0.260 and 0.982 μl O2 mg wwt− 1 h− 1. The Q10 value over the temperature range 15-25 °C was estimated at 3.13. At a constant temperature of 15 °C the respiration rate of P. peringueyi also increased with an increase in salinity and ranged between 0.231 and 0.860 μl O2 mg wwt− 1 h− 1. For combination experiments the absence of any significant difference in the respiration rate of P. peringueyi at the four temperatures over the salinity range 15-35‰ suggests that the shrimp is well adapted to inhabiting environments characterised by variations in salinity and temperature such as those encountered within the middle and lower reaches of permanently open estuaries with substantial freshwater inflow. On the other hand, the total mortality of the shrimp recorded at salinities < 5‰ at all four temperatures suggests that the upper distribution of the shrimp may reflect physiological constraints. Similarly, the increase in the respiration rate of the shrimp at the four temperatures at salinities > 35‰ suggests that the shrimp may experience osmotic stress in freshwater deprived permanently open and intermittently open estuaries where hypersaline conditions may develop.  相似文献   

17.
In its natural habitat, Microcebus murinus, a small malagasy prosimian primate, is exposed to seasonal shortage of water and resources. During the winter dry season, animals enter a pronounced fattening period with concurrent decrease in behavioural/physiological activities, whereas the breeding season is restricted to the rainy summer months. To determine the role of daylength on metabolic rate and water loss in this nocturnal primate, we measured body mass, oxygen consumption at 25°C (RMR), circadian water loss through urine output (UO) and evaporation (EWL) in eight males exposed to either short days (8L:16D SD) or long days (14L:10D LD), under controlled captive conditions. Exposure to SD led to a ponderal increase (maximal body mass: 125±4 g, N=8), and to significant changes in RMR and water loss, both reaching lowest values after 3 months under SD (0.84±0.04 ml O2 h−1 g−1 and 38±0.3 mg H2O g−1 day−1, respectively). Following exposure to LD, body mass decreased to 77±3 g (N=8), whereas both RMR and water loss, mainly through EWL, significantly increased (P<0.001), the highest value occurring after 2 months (1.51±0.08 ml O2 h.−1 g−1 and 87±7 mgH2O g−1 day−1, respectively). Moreover, independent of daylength, circadian changes in EWL were characterized by significantly reduced values during the diurnal rest. The results demonstrate that daylength variations affect the physiology of this tropical primate, allowing anticipatory adaptation to seasonal environmental constraints.  相似文献   

18.
19.
As eutrophication of coastal waters increases, water quality issues such as hypoxia have come to the forefront of environmental concerns for many estuarine systems. Chronic hypoxia during the summer has become a common occurrence in numerous estuaries, degrading nursery habitat and increasing the potential for exposure of juvenile fish to low levels of dissolved oxygen (DO).We conducted a laboratory study to investigate how hypoxic conditions and temperature affect growth rates of two juvenile estuary-dependent fish: the Atlantic menhaden (Brevoortia tyrannus) and spot (Leiostomus xanthurus). For a 2-week period, we exposed the fish to one of four constant DO levels (6.0, 4.0, 2.0 or 1.5 mg O2 l−1), at one of two temperatures (25 or 30 °C). A fifth DO treatment, included for spot at 30 °C, allowed DO to fluctuate from 10.0 mg O2 l−1 during the day, to 2.0 mg O2 l−1 at night. This diel fluctuation approximated the natural DO cycle in tidal estuarine creeks. Size measurements were recorded at the beginning, middle and end of experiments.Growth rates were generally unaffected by low DO until concentrations dropped to 1.5 mg O2 l−1, resulting in 31-89% growth reductions. Our results suggest that DO levels must be severely depressed, and in fact, approaching lethal limits, to negatively impact growth of juvenile spot and Atlantic menhaden.  相似文献   

20.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号