首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Populations of a rheophilic cyprinid Barbus barbus have declined in last decades, which created a need of conservation aquaculture. Production of stocking material in controlled conditions calls for optimization of the two major factors, temperature and diet. Condition, growth and food conversion ratio in fish fed a formulated diet Aller Futura were compared with those on natural food—frozen Chironomidae larvae at 17, 21 and 25 °C. Groups of 60 early juveniles (0.6–3.7 g) were reared in each of 18 aquaria in which six experimental groups were run in triplicate. Daily food ratios were adjusted according to fish biomass, differences in hydration between the two diets and rearing temperature. No mortality occurred during the experiment. Condition coefficient K was significantly higher in fish fed Aller Futura compared to those fed Chironomidae irrespective of temperature tested; body deformities were not recorded. Relative growth rate at the same temperature was always higher in fish on the formulated diet than in those fed Chironomidae, and food conversion ratio was always suppressed, both suggesting an efficient utilization of Aller Futura for growth in B. barbus early juveniles. On both diets the coefficient K was depressed at 21 °C. Relative growth rate (RGR) was accelerated with temperature according the Krogh’s “normal curve” within the range 21–25 °C, while at lower temperatures (17–21 °C) the observed values of temperature coefficient Q10 were much higher than the theoretical Q10 values based on Krogh’s “normal curve”. Food conversion ratios (FCR) were reduced on both diets at 21 and 25 °C. Theoretical optimum temperatures for food conversion were 22.0 and 23.6 °C. Summing up, responses of three independent indices: condition, growth and food utilization locate the optimum temperature for B. barbus between 21 and 25 °C. No evidence was found that the effect of temperature on these indices was substantially modified by the diet.  相似文献   

2.
The effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea were examined in the laboratory. The irradiance at the light compensation point (I0) was 14.40 μmol m− 2 s− 1 and the irradiance at growth saturation (Is) was 114 μmol m− 2 s− 1. We exposed A. sanguinea to 48 combinations of temperature (5-30 °C) and salinity (5-40) under saturating irradiance; it exhibited its maximum growth rate of 1.13 divisions/day at a combination of 25 °C and salinity of 20. A. sanguinea was able to grow at temperatures from 10 to 30 °C and salinities from 10 to 40. This study revealed that A. sanguinea was a eurythermal and euryhaline organism; in Japan it should have formed blooms in early summer, when salinity was relatively low. In addition, it was noteworthy that A. sanguinea had markedly cold-durability, retaining the motile form of vegetative cells for more than 50 days at 5 °C and at salinities of 25-30.  相似文献   

3.
We studied the effect of food concentration on the feeding and growth rates of different larval developmental stages of the spionid polychaete Polydora ciliata. We estimated larval feeding rates as a function of food abundance by incubation experiments with two different preys, presented separately, the cryptophyte Rhodomonas salina (ESD = 9.7 µm) and the diatom T.weissflogii (ESD = 12.9 µm). Additionally, we determined larval growth rates and gross growth efficiencies (GGE) as a function of R. salina concentration.P.ciliata larvae exhibited a type II functional response. Clearance rates decreased continuously with increasing food concentration, and ingestion rates increased up to a food saturation concentration above which ingestion remained fairly constant. The food concentration at which feeding became saturated varied depending on the food type, from ca. 2 µg C mL− 1 when feeding on T. weissflogii to ca. 5 µg C mL− 1 when feeding on R. salina. The maximum carbon specific ingestion rates were very similar for both prey types and decreased with increasing larval size/age, from 0.67 d− 1 for early larvae to 0.45 d− 1 for late stage larvae. Growth rates as a function of food concentration (R. salina) followed a saturation curve; the maximum specific growth rate decreased slightly during larval development from 0.22 to 0.17 d− 1. Maximum growth rates were reached at food concentrations ranging from 2.5 to 1.4 µg C mL− 1 depending on larval size. The GGE, estimated as the slope of the regression equations relating specific growth rates versus specific ingestion rates, were 0.29 and 0.16 for early and intermediate larvae, respectively. The GGE, calculated specifically for each food level, decreased as the food concentration increased, from 0.53 to 0.33 for early larvae and from 0.27 to 0.20 for intermediate larval stages.From an ecological perspective, we suggest that there is a trade-off between larval feeding/growth kinetics and larval dispersal. Natural selection may favor that some meroplanktonic larvae, such as P.ciliata, present low filtration efficiency and low growth rates despite inhabiting environments with high food availability. This larval performance allows a planktonic development sufficiently long to ensure efficient larval dispersion.  相似文献   

4.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

5.
Vermistabilization of primary sewage sludge   总被引:4,自引:0,他引:4  
Hait S  Tare V 《Bioresource technology》2011,102(3):2812-2820
An integrated composting-vermicomposting process has been developed for utilization of primary sewage sludge (PSS). Matured vermicompost was used as bulking material and a source of active microbial culture during aerobic activated composting (AAC). AAC resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with PSS and produced materials acceptable for vermicomposting. Vermicomposting caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total organic carbon (TOC), C/N ratio and pathogens and substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP) as compared to compost. Environmental conditions and stocking density have profound effects on vermicomposting. Temperature of 20 °C with high humidity is favorable environmental condition for vermicomposting employing Eisenia fetida. Favorable stocking density range for vermiculture is 0.5-2.0 kg m−2 (optimum: 0.5 kg m−2) and for vermicomposting is 2.0-4.0 kg m−2 (optimum: 3.0 kg m−2), respectively.  相似文献   

6.
Concern for the increasing occurrence of coastal zone hypoxia has generally focused on the direct, short-term impact of reduced dissolved oxygen (DO) concentrations on the survival of commercially important species such as fish and crabs. Copepods, especially the naupliar stages, are important pelagic food web components, yet only a few studies have considered the effect of reduced DO concentrations on their survival and population dynamics. This study considers the impact of both lethal and sublethal DO concentrations on copepods. Acartia tonsa were reared at 25 °C at saturating DO (normoxic control) and reduced (hypoxic) DO concentrations of 1.5 or 0.7 ml l−1. Oxygen concentrations were maintained in replicate flasks, by bubbling seawater with air (control), or mixtures of nitrogen and oxygen. Egg production, but not survival, was significantly higher in the controls compared to the 1.5 ml l−1 DO treatment. Survival and egg production were significantly lower at 0.7 ml l−1 DO compared to the control. The results suggest that the sublethal as well as the lethal effects of hypoxia may have important repercussions on population and community dynamics in coastal systems.  相似文献   

7.
Juvenile Tachypleus tridentatus and Carcinoscorpius rotundicauda with prosomal widths of between 17.1 and 91.1 mm were obtained from their nursery beaches in Hong Kong. They were kept in the laboratory and fed a mixture of squid, prawn and fish. Prosomal width and wet weight were measured weekly to obtain growth data. Over half of the individuals molted during a five and a half month captivity period. After every ecdysis, prosomal width and wet weight of T. tridentatus grew by averages of 24.2% and 71.5% over pre-molt measurements, respectively. Similar values were obtained for C. rotundicauda, i.e. 24.0% and 77.3%, respectively. Three T. tridentatus with prosomal widths of between 26.5 and 35.0 mm molted twice between 89 and 149 days, leading to an average growth rate of 0.1 mm·day−1 and 0.04 g·day−1 in terms of prosomal width and wet weight, respectively. A positive growth allometry (b coefficient=2.97) was identified, indicating that weight gain for T. tridentatus, and possibly C. rotundicauda, was faster than prosomal width growth after each ecdysis. The effect of temperature on growth was also determined by comparing the percentages of T. tridentatus which molted at ∼28 °C and ∼18 °C. Fifty percent of individuals molted at the former, but only 10% at the latter. This study indicates that Hong Kong horseshoe crabs take a shorter time to reach sexual maturity, as compared with conspecifics in Japan, because they can molt more frequently at higher sediment/water temperatures (∼28 °C) if food is available.  相似文献   

8.
The effects of various environmental parameters on zooxanthellae isolated from the sea anemone Condylactis gigantea were studied under controlled conditions in the laboratory. We determined that the zooxanthellae, identified as Symbiodinium microadriaticum, (by Trench. B.) belong to clade B. These algae were exposed to a range of temperatures (17, 21.7, 26 °C), light intensities (25, 30, 45, 85 μmol q m−2 s−1) and nutrient regimes. While growth rate was relatively independent of treatment, respiration increased significantly with temperature. Both light and temperature did have a significant effect on photosynthetic parameters.The cultured zooxanthellae responded to the environment in ways similar to those of freshly isolated ones, and survived under a wide range of temperatures (17, 21.7, 26 °C).In general, clade B seems to be flexible and well adapted to the temperature range encountered in seawater throughout its wide global distribution.  相似文献   

9.
This study aimed to evaluate the protein requirement of Clarias batrachus fry, were estimated at two different water temperatures, 28 and 32 °C. The influence of dietary protein level and water temperature on body composition, weight gain, food and nutrient utilization were estimated. The Asian catfish, C. batrachus fry were fed four diets containing 28% (diet 1), 32% (diet 2), 36% (diet 3) and 40% (diet 4) protein levels and reared at two water temperatures 28 and 32 °C for 60 days. Fry fed with diet 3 containing 36% protein showed the highest mean final body weight at 32 °C. Final body weight was significantly (P<0.05) affected by dietary treatments and temperatures. Clarias batrachus fry raised at 28 °C had higher feed efficiency (93.20%) than the fry reared at 32 °C (87.58%) with 28% dietary protein level. Further, feed efficiency decreased with increase in dietary protein level. Higher daily protein retention (0.089%) observed at lower (0.0217 g) daily protein intake at 28 °C than 0.0283 g at 32 °C. While, optimal (0.0282 g) daily protein intake showed higher daily weight gain at 32 °C. Productive protein value (% PPV) was maximum (1.76%) at 32 °C than at 28 °C (0.76%). Final body lipid recorded higher value than initial body lipid at both the temperatures. Hepatosomatic index (HSI) observed to have been influenced (P<0.05) by diets and temperatures, while viscerosomatic index (VSI) affected (P<0.05) by only diets and not (P>0.05) by temperatures. The study concluded that the diet 3 containing 36% protein was optimal for growth of C. batrachus fry at both the temperatures.  相似文献   

10.
To estimate the accumulated food consumption and growth of juvenile Japanese flounder Paralichthys olivaceus, we investigated the relationships between individual food consumption and growth, and the change in the stable carbon isotope ratio (δ13C). Japanese flounder juveniles were individually reared and their diet was switched from one formulated feed EP1 (δ13C = − 19.47‰) to another EP3 (δ13C = − 17.21‰) and fed at different feeding regimes. After the switch, the δ13C content of the dorsal muscle was exponentially shifted to a different level in proportion to the feeding and growth rates. Therefore, measuring the carbon stable isotope ratio is a useful tool for estimating the food consumption and growth rate of juveniles. In addition, since the velocity of change and the asymptotic value of the carbon stable isotope ratio varied in muscle, caudal fin and liver tissue, different tissues can be used for different time scale estimations.  相似文献   

11.
Phytase isolated from mung bean cotyledons was purified about 80-fold with a recovery of 28%. The enzyme is stable at 0°, has a pH optimum at 7·5 and optimal temperature of 57°. The energy of activation is approximately 8500 cal/mole between 37° and 57°. Inhibition by Pi has been found to be competitive, the Ki value being 0·40–0·43 × 10−3 M; the Km value with phytate is 0·65 × 10−3 M. Divalent cations are not required for activity. Lower members of inositol phosphates are better substrates, as shown by their Vmax and Km values. When subjected to polyacrylamide gel electrophoresis two bands have been resolved; one (major) corresponds to phytase and the other (minor) to phosphatase and pyrophosphatase activity. Filtration through Biogel P-200 partially resolves phytase from phosphatase and pyrophosphatase. The molecular weight of phytase is approximately 160,000.  相似文献   

12.
M. Büns  H. T. Ratte 《Oecologia》1991,88(4):470-476
Summary Chaoborus crystallinus fourth-instar larvae were reared individually at 14°, 17° and 20° C under different food conditions. Daphnia magna of 1.25 mm average length served as prey. The following were measured: amount of prey ingested, larval weight gain, duration of fourth instar, body weight of the adults, and egg number per female. At a given temperature, the body weight, egg-number and developmental rate increased with food consumption. At a given food consumption, higher temperatures caused a decrease in body weight and egg number, and an increase in developmental rate. Gross production efficiencies for fourth-instar larvae were highest at temperatures around 17° C. The results clearly indicate that from an energetic point of view higher temperatures are disadvantageous. In C. crystallinus vertical migration is evidently a way of lowering the temperature to which the animals are exposed and hence optimizing food conversion into biomass and offspring production, especially if prey densities are below the saturation level.  相似文献   

13.
Daily food intake of adult burbot, Lota lota, fed on vendace, Coregonus albula, were estimated experimentally at four different water temperatures (2.4, 5.1, 10.8 and 23.4°C). Mean daily food intake (MDI; g d–1) and relative daily food intake (RDI; g g–1 d–1) increased with temperature from 2.4 to 10.8°C and decreased at 23.4°C. Temperatures of maximum daily food intake values were 13.6°C for MDI and 14.4°C for RDI. No correlation between food intake values and burbot weight was observed. RDI values were used to estimate annual food consumption of burbot population. Annual food consumption estimates were 9.7kg ha–1 and 24.3kg ha–1 when burbot biomass was 2.0 or 5.0kg ha–1, respectively.  相似文献   

14.
The rate of oxygen consumption of cod in sea water at 12 °C containing MS222 (25 mg/l) can be expressed as: Qo2 = 0.245 W0,82(mg/h), where W is the lived weight of the fish (g). The maximum efficiency of conversion of assimilated food into growth was 24% during the feeding experiment. Digestion efficiencies were estimated at over 98% using fillets of plaice as food. The effect of increasing the rate of food intake was to increase liver weight and condition factor. The relative proportions of protein and lipid in the body did not change over the range of feeding levels used. The conversion efficiency had a maximum value at an intermediate feeding rate.  相似文献   

15.
The survival of aphids exposed to low temperatures is strongly influenced by their ability to move within and between plants and to survive exposure to potentially lethal low temperatures. Little is known about the physiological and behavioural limitations on aphid movement at low temperatures or how they may relate to lethal temperature thresholds. These questions are addressed here through an analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a ubiquitous temperate zone pest, Myzus polaris, an arctic species, and Myzus ornatus, a sub-tropical species. Lower lethal temperatures (LLT50) of aphids reared at 15 °C were similar for M. persicae and M. polaris (range: −12.7 to −13.9 °C), but significantly higher for M. ornatus (−6.6 °C). The temperature thresholds for activity and chill coma increased with rearing temperature (10, 15, 20, and 25 °C) for all clones. For M. polaris and M. ornatus the slopes of these relationships were approximately parallel; by contrast, for M. persicae the difference in slopes meant that the difference between the temperatures at which aphids cease walking and enter coma increased by approximately 0.5 °C per 1 °C increase in rearing temperature. The data suggest that all three species have the potential to increase population sizes and expand their ranges if low temperature limitation is relaxed.  相似文献   

16.
The aim of this study was to determine to what extent juvenile Japanese flounder can adapt to different stocking densities in captivity and to examine whether growth and some physiological parameters critical for welfare might be affected by different dissolved oxygen levels. Japanese flounder (Paralichthys olivaceus) juveniles (initial weight 1.27 ± 0.04 g/fish) were reared at five stocking densities (500, 1,000, 1,500, 2,000, 2,500 ind/m3) and two levels of dissolved oxygen (DO) concentration (5.5 ± 0.5 mg/L or 14 ± 2 mg/L) with duplicate tanks for each treatment in water‐recirculating systems for 40 days. Survival and activity of superoxide dismutase (SOD) were not affected either by stocking density or dissolved oxygen, whereas final body weight, specific growth rate (SGR) and feed conversion efficiency (FCE) of fish under low DO concentration decreased significantly with increasing stocking density. In contrast, growth of fish reared in high DO levels were unaffected by the stocking density. Furthermore, fish in this group had a higher feed intake and, consequently, grew faster (SGR) and achieved a higher final weight than fish reared at the low DO level. A significant reduction in hemoglobin (Hb) concentration and red blood cell (RBC) count of fish were recorded as DO concentration increased. Furthermore, the activity of protease decreased significantly with increasing stocking density and increased significantly with increasing DO concentration. The ventilation frequency results indicate that gill ventilation decreased significantly as DO levels increased. This study demonstrates that stocking density can affect the growth performance and physiological parameters critical for welfare of juvenile Japanese flounder. Also shown is that pure oxygen supplementation is an effective way to improve the growth of juvenile Japanese flounder when reared at a high stocking density.  相似文献   

17.
In shallow coastal habitats scavenging netted whelks Nassarius reticulatus attached egg capsules to the stipes of red algae Chondrus crispus and occasionally on Furcellaria lumbricalis and Plumaria plumose. In the laboratory egg capsules were laid on aquaria sides and lids by individuals ≥ 21 mm shell length. Larger size classes produced more egg capsules and spawned over a longer period and in doing so partitioned less energy into shell growth. Large netted whelks (25-28.9 mm) produced larger capsules which contained significantly more and larger eggs than those produced by smaller individuals (21-24.9 mm). Egg capsule production continued throughout the year by regularly fed N. reticulatus held at ambient seawater temperatures. Egg production increased in the spring and summer with peak production during June (15 °C), decreased between August and October and resumed again during the winter (November to February at ∼ 7 °C). During the summer (15-16 °C) egg capsules were smaller and contained smaller eggs than those deposited during the winter (7-10 °C), although the number of eggs · capsule1 was similar. Enforced food limitation reduced the number and size of the egg capsules, the number and size of eggs produced · female1 and the duration of the breeding period. Hatching success of N. reticulatus egg capsules was high (95%) even at winter seawater temperatures (11-8.5 °C) and the duration of embryonic development was fastest between 15 and 17.5 °C.  相似文献   

18.
This is the first demonstration that sediment contaminants can influence the reproduction of amphipods. Groups of Paracorophium excavatum from a slightly contaminated estuarine site were held within laboratory mesocosms containing four copper-spiked estuarine sediments (Cu 14-46 μg g−1 dry weight) and a control sediment (Cu 5 μg g−1 dry weight) at 15 °C for 28 days. Copper sediment concentration did not affect the amphipod sex ratio. Female maturation was inhibited within copper-spiked sediments but female length was similar. Juvenile recruitment occurred only in sediments containing less than 20 μg g−1. Males were significantly larger than females in the control sediment (Cu 5 μg g−1 dry weight) and male length decreased linearly with increasing copper concentration. The copper concentration within whole body tissues increased with dry body dry weight in all sediments except the highest copper concentration. Following 28 days of exposure, none of the female amphipods from the copper-dosed sediments was brooding embryos. In contrast, brood size of females in the control sediment (Cu 5 μg g−1) was similar to field samples. Because low concentrations of sediment copper affect the maturation and growth rates of male and female amphipods differently, these life-history traits could affect the population structure of amphipods exposed to copper contaminated sediments.  相似文献   

19.
Final temperature preferendum of white shrimp adults were determined with acute and gravitation methods. The final preferendum was similar, independent of method (26.2–25.6 °C). A direct relationship was determined between the critical thermal maxima values and the acclimation temperatures (P<0.05). The end point of Critical Thermal Maxima (CTMax) for adults was defined as the loss of righting response (LRR). The acclimation response ratio (ARR) for adults of white shrimp had an interval of 0.36–0.76, values that agreed with others obtained for crustaceans from tropical and subtropical climates. The oxygen consumption rates increased significantly (P<0.05) from 39.6 up to 90.0 mg O2 kg−1 h−1 wet weight (w.w.) as the acclimation temperature increased from 20 to 32 °C. The range of temperature coefficient (Q10) of the white shrimp between 23 and 26 °C was the lower 1.60. The results obtained in this work are discussed in relation to the species importance in the reproductive scope and maintenance of breeders.  相似文献   

20.
The brown alga Laminaria japonica is distributed from southern Hokkaido to the northeastern Honshu in Japan. Recently, aquaculture of L. japonica has expanded to the southern coast of Japan and to China along the East China Sea. In order to elucidate the growth, biomass and productivity of L. japonica in a subtropical area, we cultivated and examined it in the Uwa Sea, in southwestern Japan over a period of 2 years. The seawater temperature ranged from 13.8 to 26.8 °C in 2001/2002 and from 13.1 to 27.2 °C in 2002/2003. In 2001/2002, the maximum density, maximum mean length and maximum mean wet wt. of L. japonica were 59.7 ± 28.0 ind. 50 cm− 1 (mean ± S.D.), 187.5 ± 82.7 cm (360 cm in the largest individual) and 130.1 ± 94.6 g wet wt., respectively. In 2002/2003, these values were 94.7 ± 22.2 ind. 50 cm− 1, 159.3 ± 74.4 cm (300 cm in the largest individual) and 95.2 ± 69.5 g wet wt., respectively. Thus, the length and weight increased when the density was low (2001/2002), and the length and weight decreased when the density was high (2002/2003). The maximum biomass was estimated to be 7200 ± 3400 g wet wt. 50 cm− 1 in 2001/2002 and 7300 ± 2000 g wet wt. 50 cm− 1 in 2002/2003. Annual production was estimated to be 33.3 kg wet wt. m− 1 year− 1 in 2001/2002 and 34.0 kg wet wt. m− 1 year− 1 in 2002/2003. The present study indicates that the annual production of L. japonica per rope of 1 m at Uwajima Bay, the Uwa Sea corresponded to 1.1-2.2 m2 of that of Hokkaido in their native area. Thus, the present study indicates that L. japonica is highly adaptable because it is able to keep a high level of productivity when grown in water with a high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号