首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Light traps were used to describe the vertical distribution of late larval stages of reef fishes in the San Blas Archipelago during three successive new moon periods. Traps were deployed in the lagoon and at an exposed site on the outer reef edge. At each site, two traps were anchored at the surface and two traps just above the bottom. Most families of reef fishes that were abundant in catches displayed clear patterns of depth preference. The larvae of gerrids, pomacentrids and lutjanids were predominantly captured in shallow traps, while gobiids, labrids, apogonids and blenniids were usually collected in deep traps. Studies that used lights to aggregate and collect larval fishes display marked differences in the composition of catches between the Great Barrier Reef (GBR) and the Caribbean. In order to determine whether such results were due to biases inherent in different sampling methods, or to locality-specific patterns of larval behaviour, we simultaneously deployed light traps and dip-netting around lights during three new moons in the San Blas Archipelago. We found that these sampling techniques collected differing components of the larval fish assemblage from the same water mass. However, there remains good evidence for the existence of locality-specific responses to light in older larval stages, suggesting that broad generalisations about patterns and causes of vertical distributions may be difficult to achieve.  相似文献   

2.
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors influencing fish population distribution and dynamics.  相似文献   

3.
Processes occurring at the end of the larval stage are of major importance in shaping spatial structure of fish assemblages in coral reefs. However, because of the difficulty in identifying larvae to species, many studies dealing with these stages are limited to the family level. It remains unknown if variation in the spatial structure of coral‐reef fish assemblages across life stages can be detected at such a coarse taxonomic level. Two different surveys conducted in a similar area of New Caledonia, Southwest Pacific, provided the opportunity to compare the structure of coral‐reef fish assemblages collected as pre‐settlement larvae, juveniles and adults along a coast to barrier reef gradient. Adult and juvenile fish were sampled using underwater visual counts (UVC) during the warm seasons of 2004 and 2005. Pre‐settlement larvae were sampled with light‐traps during the same seasons. In order to standardize data between sampling methods, analyses were conducted on the relative abundance (for larvae) and density (for juveniles and adults) of 21 families commonly collected with both methods. Relative abundances/densities of families were analysed as a function of life stage (larvae, juveniles or adults), large‐scale spatial location (coast, lagoon or barrier) and years (2004, 2005) using non‐parametric multidimensional scaling (nMDS) and permutational multivariate analysis of variance (permanova ). Kruskal–Wallis tests were then used to examine differences among life stages and locations for individual families. Different levels of spatial and temporal variability characterized fish assemblages from different life stages, and differences among life stages were detected at all locations and years. Differences among life stages were also significant at the level of individual families. Overall results indicate that studies conducted at the family level may efficiently reveal changes in coral‐reef fish spatial structure among successive life stages when large spatial scales are considered.  相似文献   

4.
To explore the vertical and horizontal distributions of fish larvae near the end of their pelagic period, six light traps were set up over four lunar months at different depths (sub‐surface, midwater and bottom) and different habitat types (reef slope: 50 m horizontal distance from the reef crest; frontier zone: 110 m horizontal distance; sandy zone: 200 m horizontal distance) on the outer reef slope of Moorea Island, French Polynesia. The highest captures were in sub‐surface traps on the reef slope and the frontier zone, and in bottom traps on the sandy zone and the frontier zone. It is hypothesized that fish larvae move towards the surface near the reef slope to avoid reef‐based planktivores and to get into a favourable position for surfing over the reef crest.  相似文献   

5.
Synopsis We tested the hypothesis that the mechanism of retention of tomcod, Microgadus tomcod, larvae and juveniles in the well-mixed part of the St. Lawrence Estuary is similar to that of sympatric smelt, Osmerus mordax, larvae who actively migrate to the surface during flood tides and to the bottom during ebb tides so as to minimize net downstream displacement. The vertical distribution of tomcod larvae and juveniles was documented during two 98-h sampling series at 2 anchor stations in June and July, 1986. An hourly index of the center of mass of fish in the water column calculated to take into account daytime net avoidance in surface waters suggested that tomcod remained deep in the water column and that their accumulation at the head of the estuary was the result of passive upstream transport by net residual circulation rather than active tidal migrations. For both series, depth of fish was inversely related to density of the water suggesting that the buoyancy of fish influenced their vertical distribution. Tomcod larvae and juveniles were advected by tidal currents. In June, larger larvae were found at low slack water indicating that they were located upstream of smaller larvae. In July, larger juveniles were located downstream of smaller juveniles, the difference in mean length between low and high slack water attaining 20 mm. Ontogenetic buoyancy changes may be responsible for these differences in the vertical distribution of tomcod. Comparisons of the early life-history stages of tomcod and smelt retained in the same area under the same hydrodynamical conditions indicate that more than one mechanism permits retention in a well-mixed estuary and that the observed species-specific patterns of vertical distribution are not simply interpretable as adaptations to retention.  相似文献   

6.
Directed motion of marine organisms is examined with a focus on efficient behaviour, where efficient swimming minimizes either energetic expenditure or transit time. The swimming behaviour of late pelagic stage reef fish larvae is modelled to illustrate relevant concepts. To swim efficiently in the sea, an organism should exploit current-driven movements of the medium. Favourable currents should be ridden and unfavourable currents avoided. Relatively short movements to control advection can have a greater effect than longer swimming bouts used for independent horizontal locomotion. If larvae exploit the vertical structure of the water column, then the extent to which they can influence their dispersal will be substantially increased.  相似文献   

7.
In situ settlement behaviour of damselfish (Pomacentridae) larvae   总被引:2,自引:0,他引:2  
Settlement‐stage damselfish (Pomacentridae) larvae of 13 species in seven genera were obtained from light traps at Lizard Island, Great Barrier Reef, Australia. Behaviour, observed in situ by SCUBA divers, of 245 larvae (6–13 mm, LS; 5–60 individuals per species) released individually within a few m of reefs during the day differed markedly among species. From 0–28% (range among 13 species) of individuals of each species swam away from the adjacent reefs without swimming to the reefs. Of those that swam to a reef, 0–75% settled. For three species, sufficient data were available to test the hypothesis that these percentages did not differ amongst reefs: the hypothesis was rejected in one species. From 0–75% of larvae that reached the reef were eaten, 0–63% subsequently left the reef and 0–60% were still swimming over the reef at the end of the observation period. Swimming speeds of all but one species were greater when swimming away from the reef than toward it. Most species exceeded average current speeds when swimming away from reefs, but not when swimming toward and over them. Average swimming depths were in the upper half of the water column for most species, and were somewhat greater where the water depths were greater. The time the larvae swam over the reef before settling and the distance swum varied greatly among species from 0 to a mean of 5.5 min and 43 m. Settlement habitats chosen differed amongst species, and in some species, they were very specific. Average settlement depth varied among species from 6–13.5 m. In one species, settlement depth varied between reefs. About half of the 53 observed interactions between larvae and reef resident fishes were predation attempts: fishes of eight species (six families) attacked larvae. The other interactions were aggressive approaches by 11 species of resident fishes, all but one of which were pomacentrids. Many of these aggressive interactions discouraged settlement attempts. Larvae of some species experienced no predatory or aggressive interactions, whereas in other species interactions averaged >0.6 per released larva. Species that swam more‐or‐less directly to settlement sites near the reef edge experienced more interactions. Even within the same family, settlement behaviour differed among species in nearly all measures.  相似文献   

8.
Identifying the ichthyoplankton of a coral reef using DNA barcodes   总被引:1,自引:0,他引:1  
Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large‐scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology.  相似文献   

9.
Epibenthic fish larvae near Lizard Island in the Great Barrier Reef Lagoon were sampled with a plankton sled during daylight in November 1981 and January–February 1982. Abundance in the epibenthos was highly variable, and although many types of larvae were present, few were concentrated there relative to the water column. Among those taxa concentrated in the epibenthos, abundances were low and variances were high. Larvae of bregmacerotids, callionymids, clupeids, monacanthids, pinguipedids, platycephalids, pseudochromids, and especially schindleriids, leiognathids and terapontids were concentrated in the epibenthos. Few reef fish larvae were epibenthic. There was some evidence of diel and ontogenetic movements into and out of the epibenthos. Our limited sampling indicates that conventional midwater plankton sampling is adequate for most fish larvae found in the Lizard Island area, but for the larvae of the above ten families, this could produce large underestimates of abundance.  相似文献   

10.
Fish larvae abundances, diversity and trophic position across shallow seagrass, coral reef and open water habitats were examined to characterize their distribution in coastal East Africa. Larvae were identified to family and analysed for abundance differences between sites and habitats, trophic level using stable-isotope analysis and parental spawning mode. Abundances differed greatly between sites with the highest numbers of larvae occurring in the open-water and seagrass habitats. Larval fish diversity was high across habitats with 51 families identified with small differences between sites and among habitats. Notably, larvae of abundant large herbivorous fishes present in reef and seagrass habitats were almost completely absent at all sampling locations. In the seagrass, demersal spawned larvae were more abundant compared with the reef and open-water habitats. Stable-isotope analysis revealed that fish larvae have a varied diet, occupying trophic level two to three and utilizing planktonic prey. This study offers new insights into distributional aspects of fish larvae along the East African coast where such information is sparse.  相似文献   

11.
Larval dispersal and recruitment are important factors that determine the distribution of adult corals. The relationships between larval dispersal, recruitment, and the adult distribution of the blue octocoral, Heliopora coerulea, were investigated on Shiraho Reef, Ishigaki Island, southwest Japan. Heliopora coerulea is a surface brooder that releases planulae in June or July on Shiraho Reef. We observed planulae between 1998 and 2000 and found that they did not swim actively; instead, they crawled into their settlement positions after becoming grounded on the substratum. Planulae occurred throughout the water column and were dispersed by tidal and wind-driven currents around the parent population on the reef flat. Recruitment was observed only within 350 m of the parent populations, including areas between the branches of the adult colony. The planulae of H. coerulea had a narrow dispersal range as a result of their mostly benthic, shorter larval duration, and the influence of weaker currents. Thus, the dispersal distance of larvae is determined by their position in the water column, the currents that deliver the larvae, and the competency period of the larvae. The narrow dispersal range of H. coerulea was consistent with recruitment of sexually derived larvae onto their natal reef.  相似文献   

12.
 Taiaro Atoll Lagoon is normally isolated from the ocean, but at least 125 marine fish species of 31 families are present there. We sampled fish larvae in Taiaro Lagoon and the nearby ocean in February 1994 with plankton net, neuston net and light trap to investigate which taxa were completing their life cycles in the lagoon. Concentrations of fish eggs and larvae were very high in the lagoon indicating intense spawning, but larvae of only 18 taxa of 10 families were present. Only six, a callionymid, gobiids, a hemiramphid, a microdesmid, and two pomacentrids, were present across a full range of pelagic sizes, and were clearly completing their pelagic stage in the lagoon. Four other taxa, an apogonid, two labrids and a scarid, were common, but the largest individuals were small (<5 mm) postflexion larvae. These may have been completing their pelagic stage in the lagoon. The remaining lagoonal larvae (eight taxa) were rare and at the preflexion stage, so we could only conclude that they hatched from eggs spawned in the lagoon. Nineteen taxa of 15 families found as adults in the lagoon were present outside the lagoon as larvae, but not inside, suggesting that they may not normally complete their life cycles in the lagoon. Horizontal distributions of larvae in the lagoon are apparently due to the interaction of larval vertical distribution behaviour with a wind-driven countercurrent system. Accepted: 16 October 1996  相似文献   

13.
Larval fishes were sampled at four depth strata during the dayand night at two locations in unstratified (winter) inner continentalshelf waters off Sydney, Australia, in May and June 1993. Assemblagesat both locations and in both sampling periods were stronglydepth stratified during the day; however, this structure weakenedat night with most taxa being found throughout the entire watercolumn. Two daytime patterns of larval fish vertical distribution(surface and deep dwellers) were evident, and taxon-specificdaytime vertical distributions were strong and not dependenton thermal stratification of the water column. Most larvae caughtwere preflexion and there was little evidence of ontogeneticdifferences in vertical distributions. For most taxa, the patternsof diel change in vertical distribution were similar at bothlocations and in both sampling periods.  相似文献   

14.
I evaluated a standard monitoring unit for the recruitment of reef fishes (SMURF) as a tool for ascertaining spatial and temporal patterns of reef fish recruitment in central California, USA. SMURFs consisted of a 1.0×0.35 m dia. cylinder of fine mesh plastic grid that contained a folded section of larger mesh plastic grid. SMURFs collected new recruits of 20 species of fish with 92% of the individuals collected from 10 species, mostly rockfish (genus Sebastes). An experiment varying depth of SMURFs in the water column (surface, mid-depth, or bottom) showed that surface SMURFs collected the greatest diversity of species and significantly greater abundance for eight species, with two species having significantly greater abundance on mid-depth SMURFs and three species having significantly greater abundance on bottom SMURFs. A comparison of cumulated recruitment from SMURFs that varied in sampling frequency (removal of new recruits every 1-3, 7, or 28 days) suggested that increasing the time between sampling caused a significant decrease in recruitment estimates for some species but not for others. To determine how well temporal patterns of recruitment to SMURFs reflected patterns to nearby reefs, I compared within season temporal patterns of recruitment to SMURFs with that at nearby reefs, estimated by visual transect surveys conducted on scuba. Temporal patterns of recruitment to SMURFs were significantly and positively related to early recruitment on reefs for one group of benthic-algal associated rockfish species when diver surveys were lagged by 30 days (r=0.87) and for another group of canopy-algal associated rockfish species when lagged by 5 days (r=0.72). SMURFs appeared to be an effective and efficient method for indexing relative rates of delivery of competent juveniles for many temperate nearshore reef fishes.  相似文献   

15.
The swimming behaviour of 534 coral reef fish larvae from 27 species was explored at Moorea Island (French Polynesia) while they searched for a suitable settlement habitat, on the first night of their lagoon life. Most larvae swam actively (74%) and avoided the bottom (77%). A significant relationship was highlighted between the vertical position of larvae in the water column and the distance they travelled from lagoon entrance to settlement habitat: larvae swimming close to the surface settled farther away on the reef than bottom-dwelling larvae.  相似文献   

16.
Directional orientation of pomacentrid larvae to ambient reef sound   总被引:1,自引:1,他引:0  
Tolimieri  N.  Haine  O.  Jeffs  A.  McCauley  R.  Montgomery  J. 《Coral reefs (Online)》2004,23(2):184-191
The mechanisms by which reef fish larvae locate settlement habitat at the end of their pelagic phase are unclear. We used an in situ binary choice chamber and an artificial source of reef sound to determine whether pomacentrid larvae can use ambient sound to locate reefs. Larvae were caught in light traps and then placed in a submerged binary choice chamber with an artificial source of reef sound ~80 m from one end of the chamber. At night, larvae moved towards the sound source; during the day, larvae showed no preference. These results suggest that pomacentrid larvae can detect reef sound and are capable of directional hearing. While other studies have shown that reef fish larvae respond to reef sound, and that the adults of some species can localize underwater sound sources, the localization of underwater sound by fish larvae has not been demonstrated previously.Communicated by Ecological Editor P.F. Sale  相似文献   

17.
Presettlement and settlement‐stage fishes were studied in a large, log‐spiral bay in temperate South Africa. The aim was to describe the assemblage composition, density and distribution associated with four types of habitats common to the bay: high profile reef, low profile reef, reef‐associated sand and open sand spatially separated from reef. Samples were collected with both a plankton ring net and a light trap at each habitat type as part of a mixed‐method approach. A total of 4084 presettlement and settlement‐stage fishes belonging to 31 teleost families and 84 species were captured. Reef‐associated sand and open sand habitats yielded higher species richness and diversity than the high and low‐profile reef habitats. Engraulidae, Gobiidae, Clupeidae and Cynoglossidae were the dominant fish families captured with the ring net, while Engraulidae, Clupeidae, Carangidae and Clinidae were captured with the light trap. A temporal difference in the abundance of presettlement fishes occurred between the sampling periods with highest values recorded during the summer settlement period. Habitat type together with associated physico‐chemical variables played a pivotal role in determining presettlement fish species composition, density and distribution across habitat types.  相似文献   

18.
Zooplankton were 3–8 times more abundant during the day near the surface than elsewhere in the water column over a 1–2.4 m deep back reef in Moorea, French Polynesia. Zooplankton were also significantly more abundant near the surface at night although gradients were most pronounced under moonlight. Zooplankton in a unidirectional current became concentrated near the surface within 2 m of departing a well-mixed trough immediately behind the reef crest, indicating that upward swimming behavior, rather than near-bottom depletion by reef planktivores, was the proximal cause of these gradients. Zooplankton were highly enriched near the surface before and after a full lunar eclipse but distributed evenly throughout the water column during the eclipse itself supporting light as a proximal cue for the upward swimming behavior of many taxa. This is the first investigation of the vertical distribution of zooplankton over a shallow back reef typical of island barrier reef systems common around the world. Previous studies on deeper fringing reefs found zooplankton depletion near the bottom but no enrichment aloft. In Moorea, where seawater is continuously recirculated out the lagoon and back across the reef crest onto the back reef, selection for upward swimming behavior may be especially strong, because the surface serves both as a refuge from predation and an optimum location for retention within the reef system. Planktivorous fish and corals that can forage or grow even marginally higher in the water column might have a substantial competitive advantage over those nearer the bottom on shallow reefs. Zooplankton abundance varied more over a few tens of centimeters vertical distance than it did between seasons or even between day and night indicating that great care must be taken to accurately assess the availability of zooplankton as food on shallow reefs.  相似文献   

19.
Synopsis The influence of light and prey abundance on the vertical distribution of herring larvae was evaluated by three investigations made under calm weather conditions in the North Sea off the Scottish coast. The investigations took place at different time after hatching and the vertical distributions of three size groups of larvae (mean sizes 8,15 and 19 mm) were related to time of day and the vertical distribution of copepods. No migratory behaviour of copepods was observed but their vertical distribution differed between investigations. In the investigation on intermediate sized larvae, copepod density peaked at the pycnocline (40 m). Larvae concentrated at this depth at noon. At dawn and dusk larvae migrated towards the surface and the vertical distributions fluctuated semidielly. In the two other investigations, copepods were homogeneously distributed in the water column and after migration towards the surface at dawn larvae stayed in the upper water column during the day. The observations suggest that the daytime vertical distribution of larvae in calm weather is mainly determined by feeding conditions: the larvae move to depths were light is sufficient for feeding, and refinement within that zone is made according to a compromise between optimal light conditions for feeding and optimal prey densities.  相似文献   

20.
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号